

Cognitive Interference Channels

Daniela Tuninetti

with Stefano Rini and Natasha Devroye, ECE UIC (University of Illinois at Chicago)

Work supported in part by NSF award #0643954

CTW2010 May 12, 2010

Interference channel (IFC)

- Multiple users → interference
- Carleial '75: "cases where interference does not reduce capacity" → it's decodable (as opposed to noise)
- How do we deal with interference?

Interference channel (IFC)

 Han-Kobayashi '81: largest known achievable region

Interference channel (IFC)

ElGamal-Costa '82: capacity of certain deterministic IFCs

$$Y_1 = X_1 + g_1(X_2) \longrightarrow X_{2,\text{common}} = g_1(X_2)$$

 $Y_1 = g_2(X_1) + X_2 \longrightarrow X_{1,\text{common}} = g_2(X_1)$

 Etkin-Tse-Wang '07: capacity of Gaussian IFCs to within 1 bit/sec/Hz

$$Y_1 = X_1 + a X_2 + Z_1 \longrightarrow \text{Var}[a X_{2,\text{private}}] \le \text{Var}[Z_1]$$

 $Y_1 = b X_1 + X_2 + Z_2 \longrightarrow \text{Var}[b X_{1,\text{private}}] \le \text{Var}[Z_2]$

IFC with Generalized Feedback (IFC-GF)

Sources sense the channel

 source
 cooperation (with Echo Yang)

IFC with conferencing encoders

GF = error free bit pipes with finite capacity

Cognitive IFC

 Limiting case of conferencing encoders: anti-causal message knowledge

NB: elements of IFC and of BC

Our Contributions

- New outer bound (ITW'09)
- New inner bound (IZS'10)
- Capacity to within 1.07 bits/sec/Hz for the Gaussian channels (ITW'10)
- Capacity results (new):
 - `Better cognition' channels
 - Semi-deterministic channels
 - Certain Gaussian channels

State-of-the-art

- 2005: **<u>Devroye</u>** et al
 - Introduces channel model; inner bound.
- 2006: Wu et al and Jovicic et al
 - BC-type outer bound; capacity in weak interference.
- 2007: Maric et al
 - Inner and outer bounds;
 capacity in very strong interference.
- 2008: Cao et al
 - General inner bound with BC idea.
- 2009: <u>Jiang</u> et al
 - General inner bound (from IFC-CR).
- 2009: Rini et al
 - Inner and outer bounds; capacity for certain classes channels; constant gap for Gaussian channels.

CTW2010 May 12, 2010

State-of-the-art

Inner bounds

Available results

 Wu et al outer bound by adapting Körner and Marton's BC outer bound

$$R_1 \leq I(Y_1; X_1 | X_2),$$

$$R_2 \le I(U, X_2; Y_2),$$

$$R_1 + R_2 \le I(U, X_2; Y_2) + I(Y_1; X_1 | U, X_2),$$

U = msg from 1 to 2

Capacity results

• Maric et al very strong interference

Capacity results

 Wu et al and Jovivic at al very weak interference

Our inner bound

c = common p = private

a = alone

b = broadcast

 W_1 U_{1c} U_{1pb}

primary—knows W2 only

cognitive—knows W₁ and W₂

U_{1pb} and U_{2pb} sent by cognitive!

New inner bound

- Enc 1 (cognitive): DPC of (U_{1c} U_{1pb}) against (U_{2pa} U_{2pb} X₂) conditioned on U_{2c}
- Enc 2 (primary): U_{2c} U_{2pa}
- Decoding as in IFC

Our outer bound

 Sato's "worst joint, same marginal" idea for non-cooperative receivers

$$R_1 \leq I(Y_1; X_1 | X_2),$$

$$R_2 \leq I(X_1, X_2; Y_2),$$

$$R_1 + R_2 \le I(X_1, X_2; Y_2) + I(Y_1; X_1 | Y'_2, X_2),$$

such that $P_{Y'_2|X_1,X_2} = P_{Y_2|X_1,X_2}$

Semi-Deterministic channels

• If $Y_1 = f_1(X_1, X_2)$ for cognitive rx:

$$R_1 \leq H(Y_1|X_2)$$
 $R_2 \leq I(Y_2; U, X_2)$
 $R_1 + R_2 \leq I(Y_2; U, X_2) + H(Y_1|U, X_2)$

Achievability: U_{1c} = U_{2c} = 0.

Deterministic channels

• If $Y_2 = f_2(X_1, X_2)$ too:

$$R_1 \le H(Y_1|X_2)$$

$$R_2 \leq H(Y_2)$$

$$R_1 + R_2 \le H(Y_2) + H(Y_1|X_2, Y_2).$$

 Achievability: U_{1pb} = Y₁ and U_{2pb} = Y₂ as for deterministic BC!

High SNR deterministic channels

Achievability: U_{1pb} = Y₁, U_{2pb} = Y₂
for all channel parameters (no
need to distinguish
strong/weak/mixed interference)

High SNR deterministic channels

High SNR deterministic channels

Gaussian channels

 Our outer bound unifies two know bounds (<u>Wu</u> et al very weak intef., and <u>Maric</u> et al very strong interf.)

Gaussian channels: gap in strong interference

Gaussian channels

Gap

Achievability:

$$Y_1 \sim U_{1pb}$$

$$= X_1 + aX_2 + Z_1'$$

$$\approx X_1 + aX_2$$

$$\approx X_1 + \frac{P_1}{P_1 + 1} aX_2$$

Gap

Z-IFC b=3 a=0

Part II: IFC-CR

- Outer bounds
- Achievability for (certain) high SNR deterministic channels

State-of-the-art: IFC-CR

- 2007: Sahin et al
 - Model and inner bound.
- 2008: Sridharan et al
 - Inner and outer bound for Gaussian sumrate.
- 2009: <u>Jiang</u> et al
 - Inner bound.
- 2010: Rini et al
 - Outer bound, tight for certain high SNR deterministic channels.

Our contributions

- Outer bound for general channels (a la Sato's CSM)
- Tightened outer bound for a class of semi-deterministic channels
- Achievability for high SNR channels for all parameters we tried (not finished yet)

High SNR channel

Interesting achievable schemes:
 n₁₁>n_{1c}>n₁₂ and n₂₂>n_{2c}>n₂₁ (R₁<n₁₁, R₂<n₂₂)

On going work

- High SNR channel: prove capacity for all parameter regimes
- (Semi) deterministic channel: capacity for certain classes
- Gaussian channel: compare our outer bound with existing ones (cognitive MIMO)
- Gaussian channel: finite gap

Conclusions

C-IFC:

- New inner bound, New Sato-type outer bound
- Gap less 1.07 bits for Gaussian
- Capacity for certain classes of channels

IFC-CR:

- New Sato-type outer bound
- Capacity for high SNR channel for all parameter range we tried
- Working on Gaussian channel

IFC-GF:

- New Sato-type outer bound
- Working on reducing gap for Gaussian channel
- Working on multiplicative gap

