Improving Delay in a Multi-hop Wireless Network with Receiver Diversity

Tara Javidi Electrical and Computer Engineering University of California, San Diego

Joint Work with: Parul Gupta, M. Naghshvar, and H. Zhuang

(Acknowledgment: D. Teneketzis, C. Lott)

Center for Wireless COMMUNICATIONS

Model (M1)

Model (M1)

single tx-type, single commodity, with orthogonal channels [LottTeneketzis, CDC'00], [LottJTeneketzis, SN'02], [Neely, CISS'06]

• Network consists of nodes: {1, 2, ..., d}

Model (M1)

- Network consists of nodes: {1, 2, ..., d}
- Packets are destined for *d*
 - $A_t(i)$: # of packets originating at node i at time t
 - Bounded and mixing random process with rate λ_i

Model (M1)

- Network consists of nodes: {1, 2, ..., d}
- Packets are destined for *d*
 - $A_t(i)$: # of packets originating at node i at time t
 - Bounded and mixing random process with rate λ_i
- Slotted time/packet: Node i's tx of one packet takes one time slot

Model (M1)

- Network consists of nodes: {1, 2, ..., d}
- Packets are destined for d
 - $A_t(i)$: # of packets originating at node i at time t
 - Bounded and mixing random process with rate λ_i
- Slotted time/packet: Node i's tx of one packet takes one time slot
- Node i's tx successfully reved and acked by subset s of neighbors with probability P(s|i) independent of other tx (orthogonal tx)

- Routing decision frame
 - The node responsible, i, transmits (locally broadcasts)
 - Nodes S_t successfully decode & acknowledge reception (tx outcome)
 - Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit

- Routing decision frame
 - The node responsible, i, transmits (locally broadcasts)
 - Nodes S_t successfully decode & acknowledge reception (tx outcome)
 - Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit
- Routing policy maps actions to tx outcomes

- Routing decision frame
 - The node responsible, i, transmits (locally broadcasts)
 - Nodes S_t successfully decode & acknowledge reception (tx outcome)
 - Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit
- Routing policy maps actions to tx outcomes
- Distributed: "routing token" + three way hand-shake

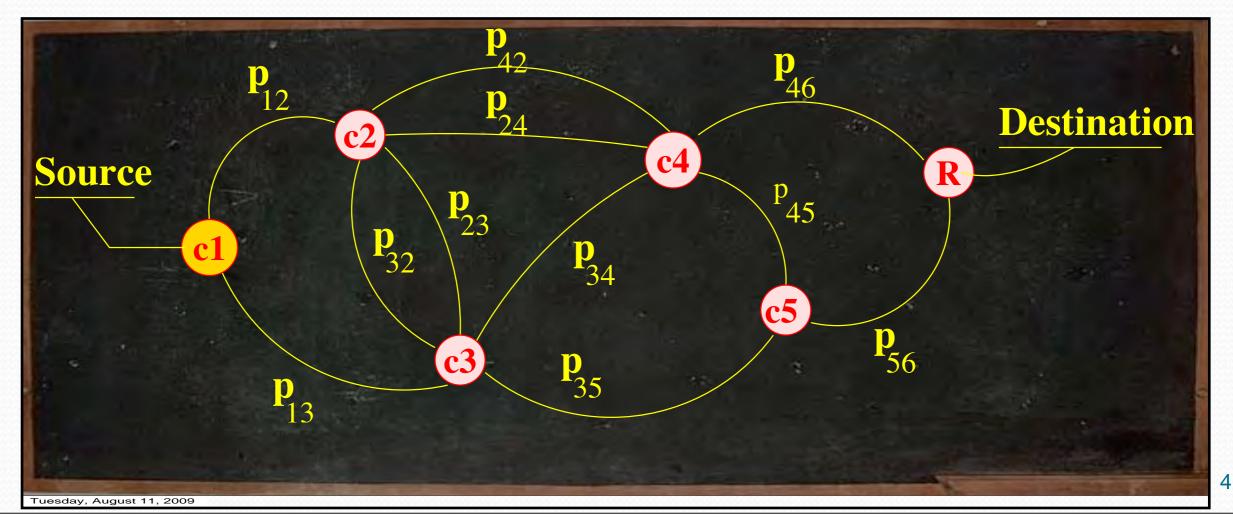
- Routing decision frame
 - The node responsible, i, transmits (locally broadcasts)
 - Nodes S_t successfully decode & acknowledge reception (tx outcome)
 - Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit
- Routing policy maps actions to tx outcomes
- Distributed: "routing token" + three way hand-shake <u>Objective:</u>

- Routing decision frame
 - The node responsible, i, transmits (locally broadcasts)
 - Nodes S_t successfully decode & acknowledge reception (tx outcome)
 - Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit
- Routing policy maps actions to tx outcomes
- Distributed: "routing token" + three way hand-shake

Objective:

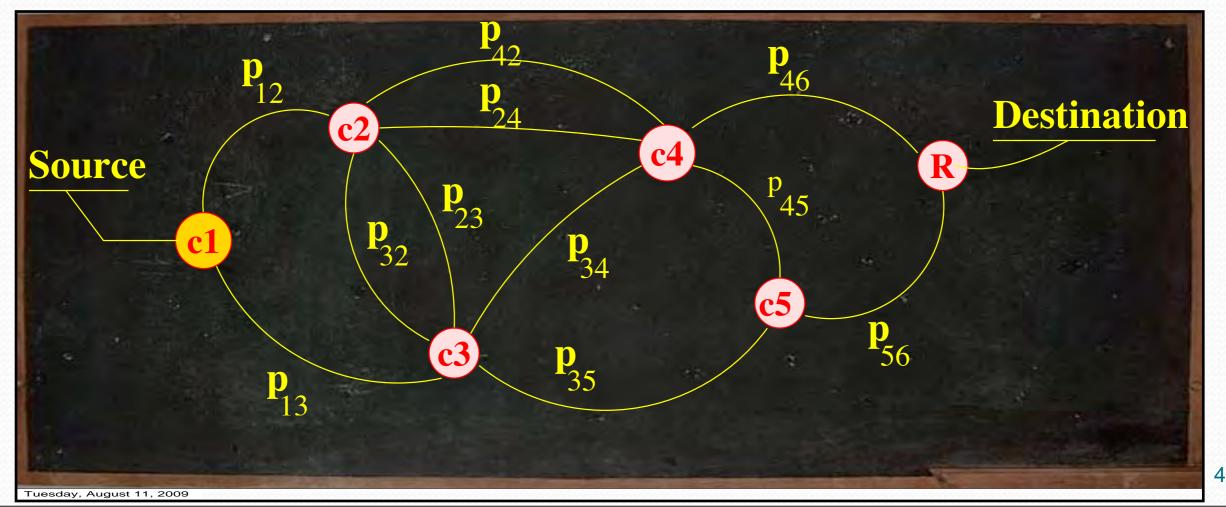
Deliver the packets to the destination with small expected delay

• (per packet) delay = interval between arrival time to delivery time



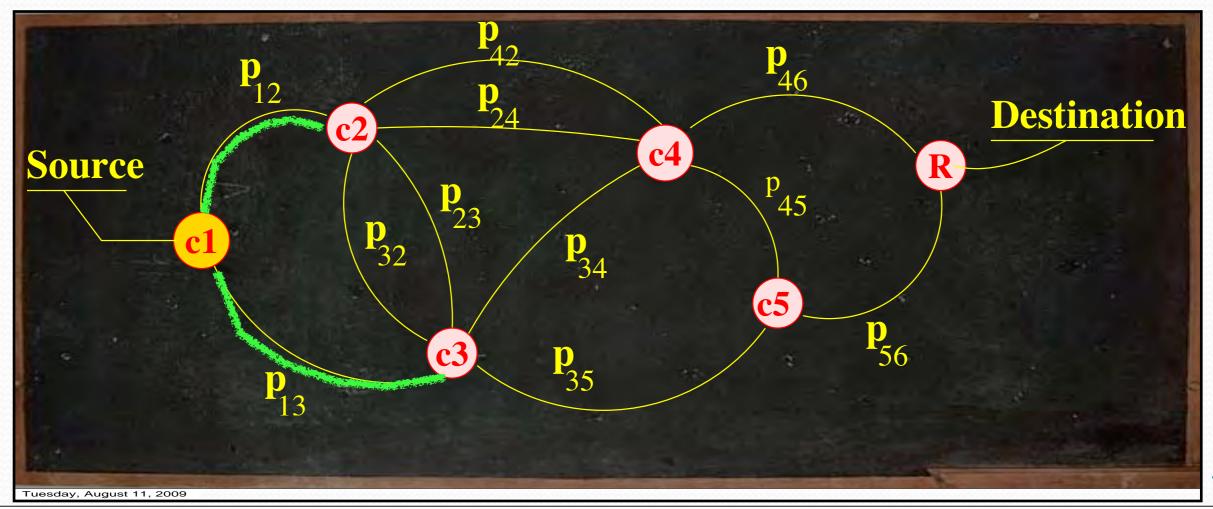
Monday, May 17, 2010

• Transmissions received probabilistically and are acked

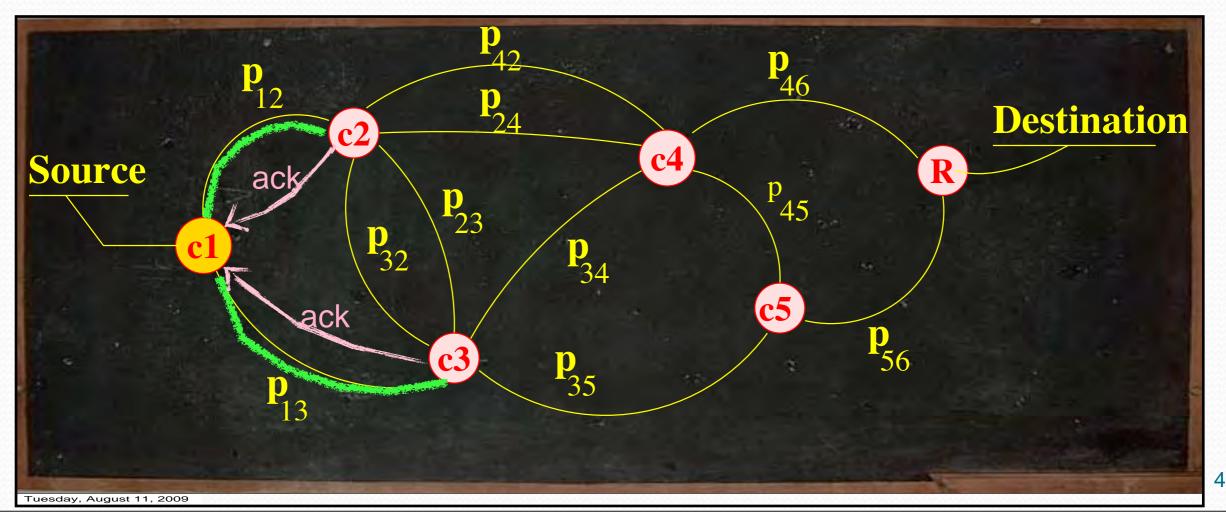


Monday, May 17, 2010

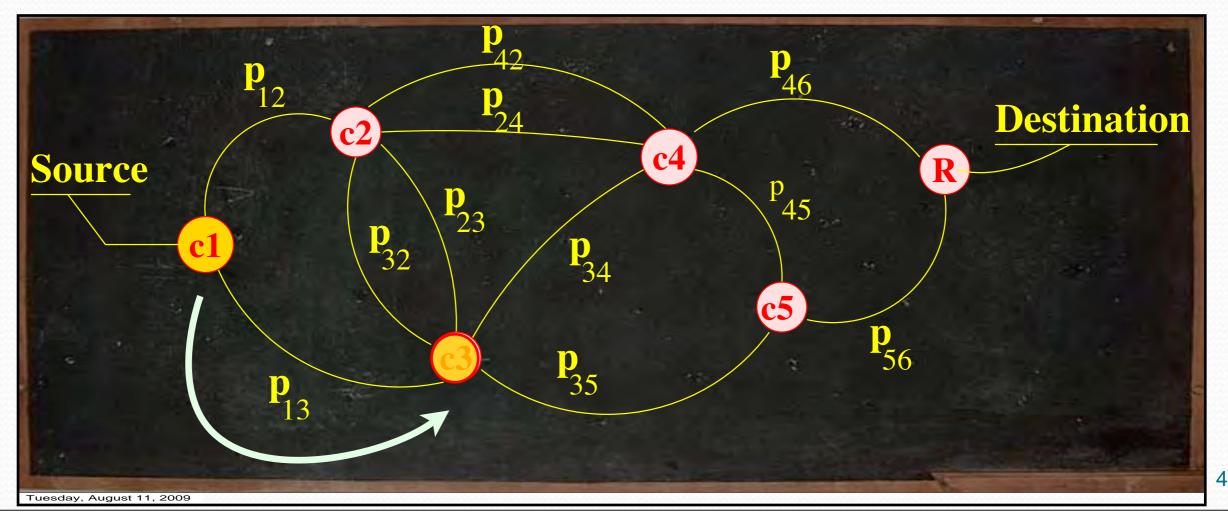
- Transmissions received probabilistically and are acked
- The node responsible, *i*, transmits (locally broadcasts)



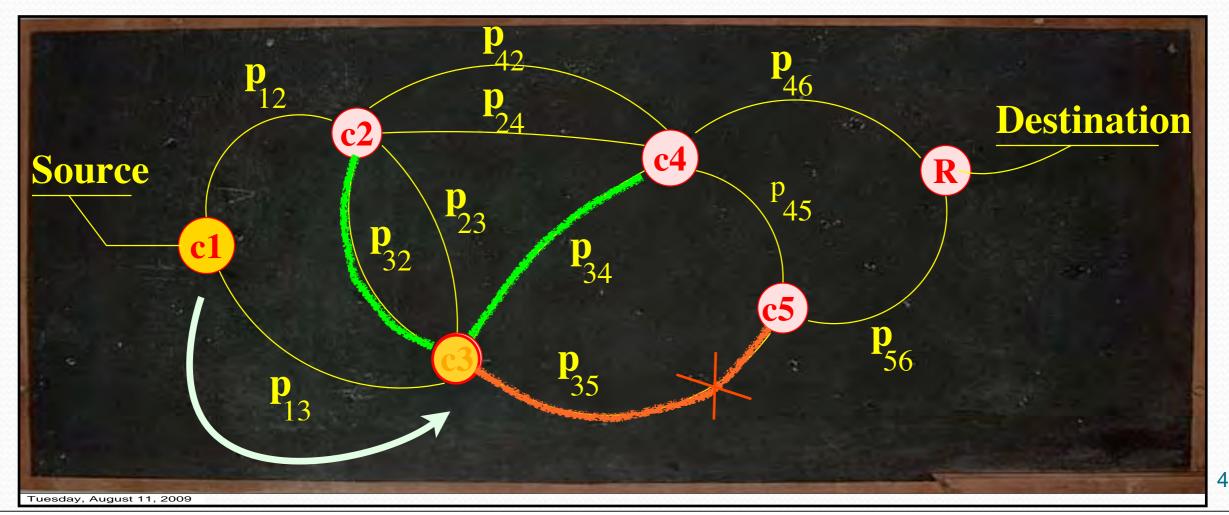
- Transmissions received probabilistically and are acked
- The node responsible, *i*, transmits (locally broadcasts)
- Nodes S_t successfully decode & acknowledge reception (tx outcome)



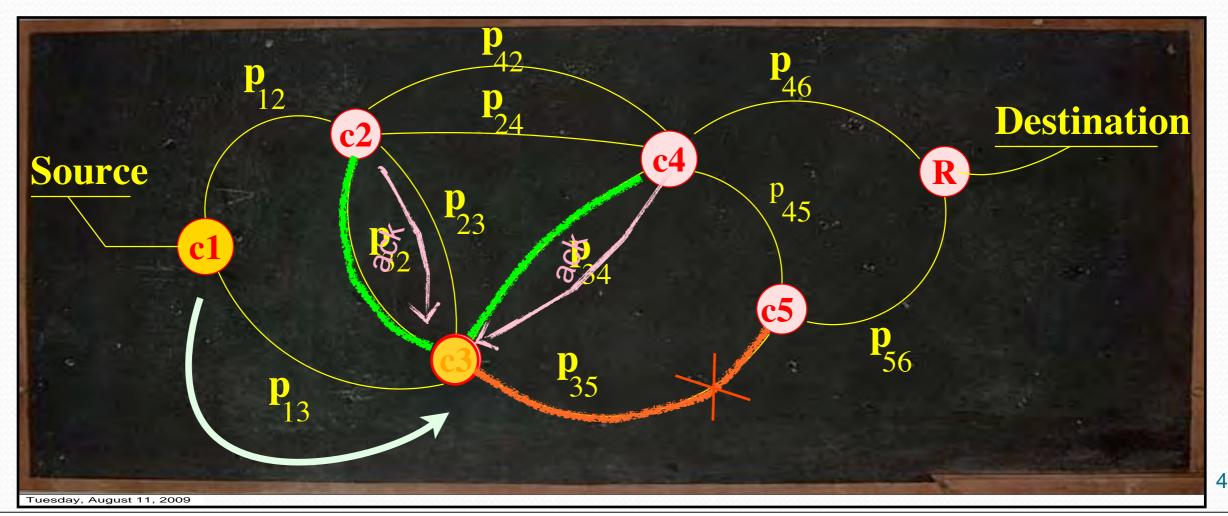
- Transmissions received probabilistically and are acked
- The node responsible, *i*, transmits (locally broadcasts)
- Nodes S_t successfully decode & acknowledge reception (tx outcome)
- Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit



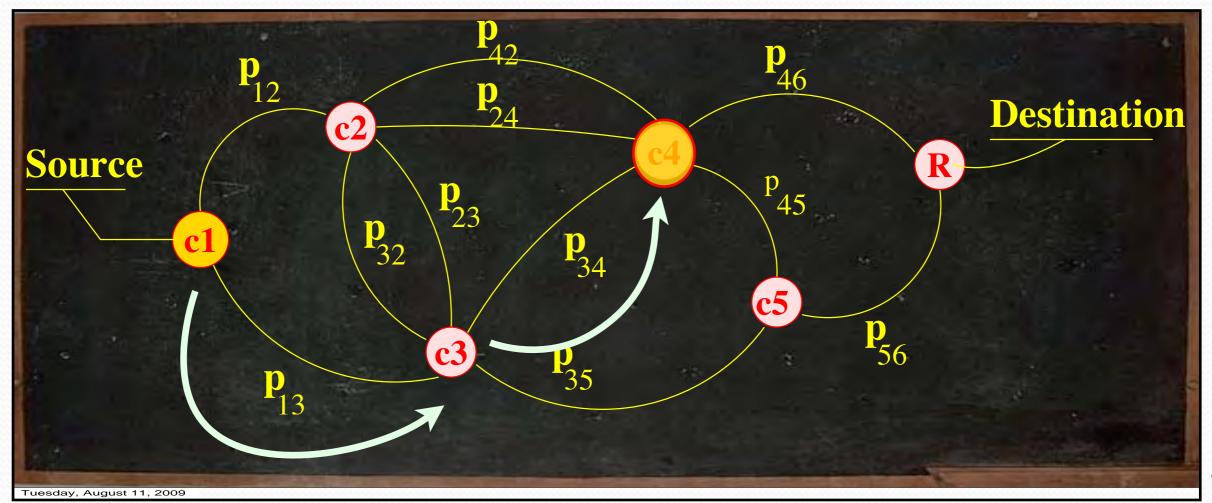
- Transmissions received probabilistically and are acked
- The node responsible, *i*, transmits (locally broadcasts)
- Nodes S_t successfully decode & acknowledge reception (tx outcome)
- Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit



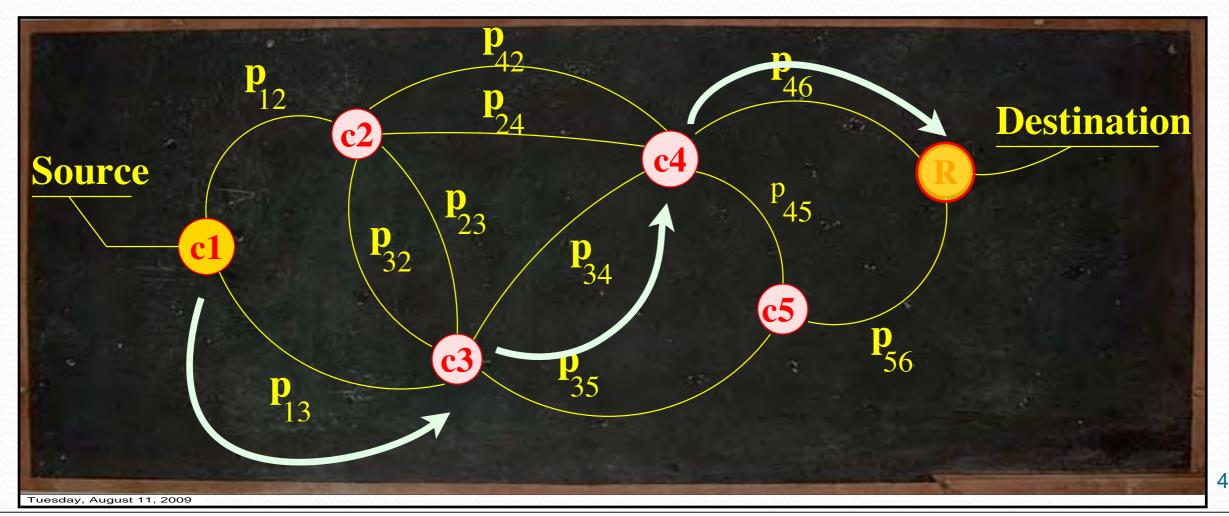
- Transmissions received probabilistically and are acked
- The node responsible, i, transmits (locally broadcasts)
- Nodes S_t successfully decode & acknowledge reception (tx outcome)
- Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit



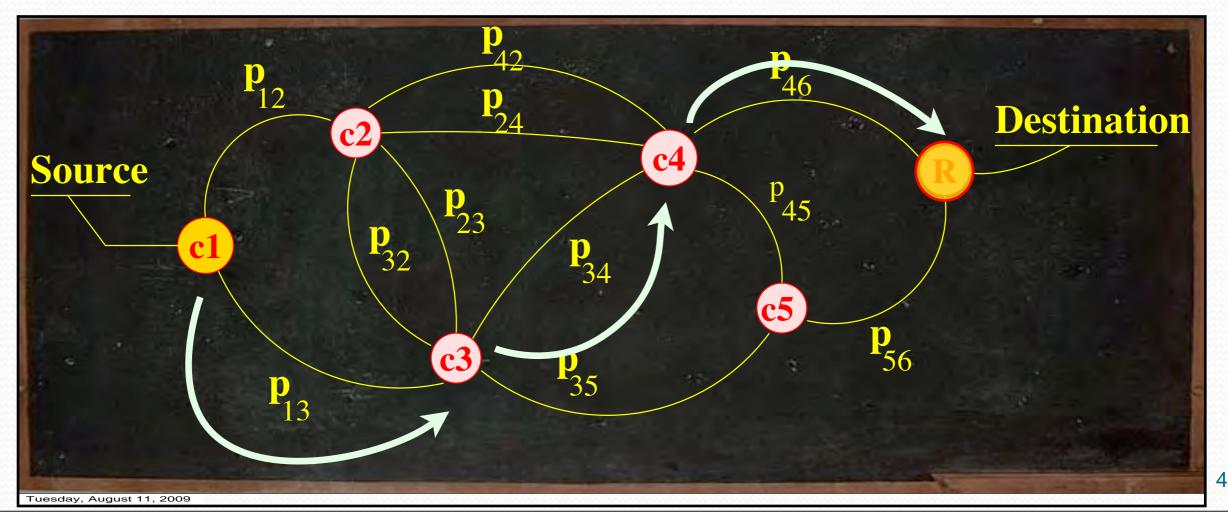
- Transmissions received probabilistically and are acked
- The node responsible, *i*, transmits (locally broadcasts)
- Nodes S_t successfully decode & acknowledge reception (tx outcome)
- Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit



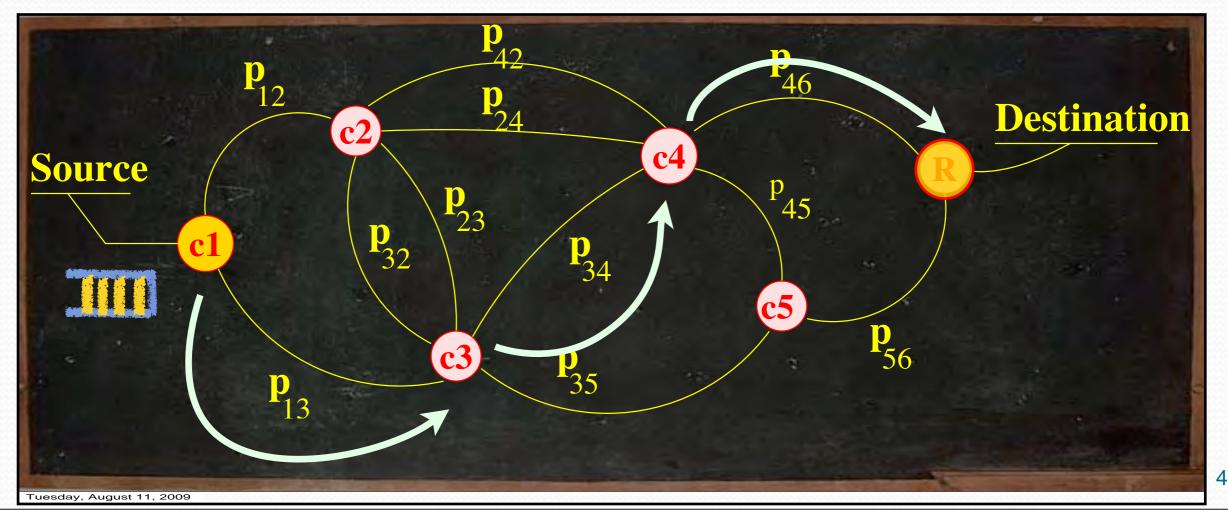
- Transmissions received probabilistically and are acked
- The node responsible, i, transmits (locally broadcasts)
- Nodes S_t successfully decode & acknowledge reception (tx outcome)
- Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit



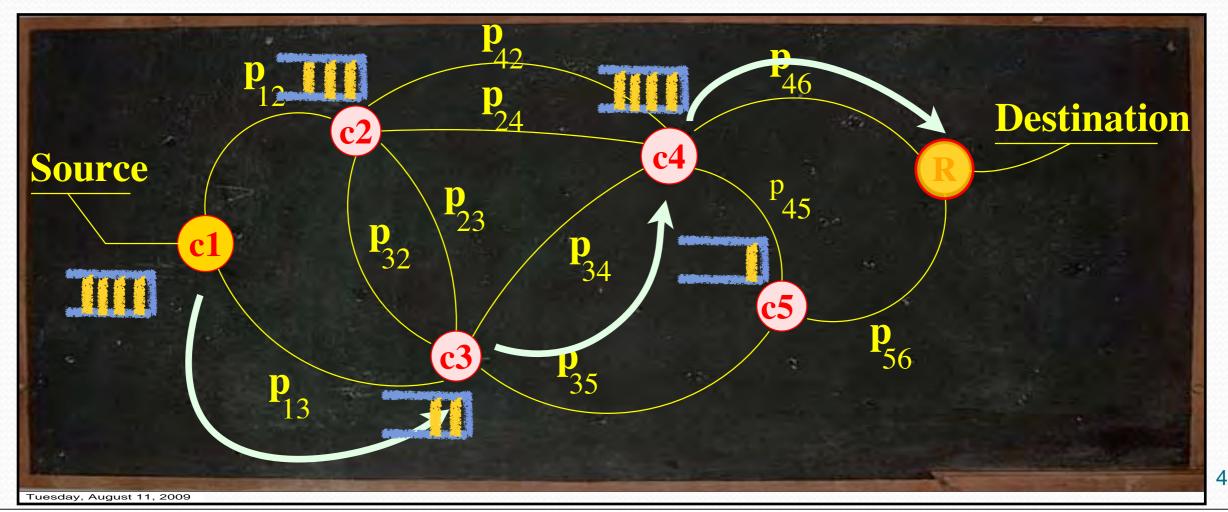
- Transmissions received probabilistically and are acked
- The node responsible, ί, transmits (locally broadcasts)
- Nodes S_t successfully decode & acknowledge reception (tx outcome)
- Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit



- Transmissions received probabilistically and are acked
- The node responsible, *i*, transmits (locally broadcasts)
- Nodes S_t successfully decode & acknowledge reception (tx outcome)
- Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit
- Packets are queued up when immediate relaying not possible



- Transmissions received probabilistically and are acked
- The node responsible, *i*, transmits (locally broadcasts)
- Nodes S_t successfully decode & acknowledge reception (tx outcome)
- Actions: 1) choose a neighbor in s_t as the next relay, or 2) retransmit
- Packets are queued up when immediate relaying not possible



• Routing determines packet departures from i to j

- Routing determines packet departures from i to j
 - $D_t(i,j)$: # of packets from i to j at time $t(D_t(i,j) \in \{0,1\})$ and $\sum_j D_t(i,j) \leq 1$)

- Routing determines packet departures from i to j
 - $D_t(i,j)$: # of packets from i to j at time $t(D_t(i,j) \in \{0,1\})$ and $\sum_j D_t(i,j) \leq 1$)
- Vector of queue backlogs: a stochastic process in

- Routing determines packet departures from ί to j
 - $D_t(i,j)$: # of packets from i to j at time $t(D_t(i,j) \in \{0,1\})$ and $\sum_j D_t(i,j) \leq 1$)
- Vector of queue backlogs: a stochastic process in $\overrightarrow{q_t} \in \mathbb{Z}_+^d$

$$q_{t+1}(i) = \left[q_t(i) - \sum_j D_t(i,j)\right]^+ + A_t(i) + \sum_j D_t(j,i)$$

Routing policy controls transitions of this process

- Routing determines packet departures from ί to j
 - $D_t(i,j)$: # of packets from i to j at time $t(D_t(i,j) \in \{0,1\})$ and $\sum_j D_t(i,j) \leq 1$)
- Vector of queue backlogs: a stochastic process in $\vec{q_t} \in \mathbb{Z}_+^d$

$$q_{t+1}(i) = \left\lfloor q_t(i) - \sum_j D_t(i,j) \right\rfloor + A_t(i) + \sum_j D_t(j,i)$$

- Routing policy controls transitions of this process
 - Markov under a Markov policy $\pi : \vec{q}_t \times S_t \to \vec{D}_t$

- Routing determines packet departures from ί to j
 - $D_t(i,j)$: # of packets from i to j at time $t(D_t(i,j) \in \{0,1\})$ and $\sum_j D_t(i,j) \leq 1$)
- Vector of queue backlogs: a stochastic process in $\overrightarrow{q_t} \in \mathbb{Z}_+^d$

$$q_{t+1}(i) = \left\lfloor q_t(i) - \sum_j D_t(i,j) \right\rfloor + A_t(i) + \sum_j D_t(j,i)$$

- Routing policy controls transitions of this process
 - Markov under a Markov policy $\pi : \vec{q}_t \times S_t \rightarrow \vec{D}_t$ Objective:

- Routing determines packet departures from ί to j
 - $D_t(i,j)$: # of packets from i to j at time $t(D_t(i,j) \in \{0,1\})$ and $\sum_j D_t(i,j) \leq 1$)
- Vector of queue backlogs: a stochastic process in $\overrightarrow{q_t} \in \mathbb{Z}_+^d$

$$q_{t+1}(i) = \left[q_t(i) - \sum_j D_t(i,j) \right] + A_t(i) + \sum_j D_t(j,i)$$

- Routing policy controls transitions of this process
 - Markov under a Markov policy $\pi : \vec{q}_t \times S_t \to \vec{D}_t$

Objective:
Find policy with small
$$\mathbb{E}\left\{\sum_{i} q_{t+1}(i)\right\}$$

- Routing determines packet departures from ί to j
 - $D_t(i,j)$: # of packets from i to j at time $t(D_t(i,j) \in \{0,1\})$ and $\sum_j D_t(i,j) \leq 1$)
- Vector of queue backlogs: a stochastic process in $\overrightarrow{q_t} \in \mathbb{Z}_+^d$

$$q_{t+1}(i) = \left[q_t(i) - \sum_j D_t(i,j)\right]^+ + A_t(i) + \sum_j D_t(j,i)$$

- Routing policy controls transitions of this process
 - Markov under a Markov policy $\pi : \vec{q}_t \times S_t \to \vec{D}_t$

Objective: Find policy with small $\mathbb{E}\left\{\sum_{i} q_{t+1}(i)\right\}$ (Little's Law small mean delay)

- Routing determines packet departures from ί to j
 - $D_t(i,j)$: # of packets from i to j at time $t(D_t(i,j) \in \{0,1\})$ and $\sum_j D_t(i,j) \leq 1$)
- Vector of queue backlogs: a stochastic process in $\overrightarrow{q_t} \in \mathbb{Z}_+^d$

$$q_{t+1}(i) = \left[q_t(i) - \sum_j D_t(i,j)\right]^+ + A_t(i) + \sum_j D_t(j,i)$$

- Routing policy controls transitions of this process
 - Markov under a Markov policy $\pi : \vec{q}_t \times S_t \to \vec{D}_t$

Objective: Find policy with small $\mathbb{E}\left\{\sum_{i} q_{t+1}(i)\right\}$ (Little's Law small mean delay)

when $(\lambda_{1,...,\lambda_{d-1}})$ admissible: at least one policy with finite delay

• Routing Policy \Leftrightarrow rank ordering used to make routing decisions

- Routing Policy \Leftrightarrow rank ordering used to make routing decisions
- Opportunistic Shortest Path Routing [LT'00]

- Routing Policy \Leftrightarrow rank ordering used to make routing decisions
- Opportunistic Shortest Path Routing [LT'00]
 - Rank order nodes based on the expected transmissions (ETX, distance)

- Routing Policy \Leftrightarrow rank ordering used to make routing decisions
- Opportunistic Shortest Path Routing [LT'00]
 - Rank order nodes based on the expected transmissions (ETX, distance)
 - Optimal if <u>one packet</u> in network, but <u>unbounded delay</u> in high traffic

- Routing Policy \Leftrightarrow rank ordering used to make routing decisions
- Opportunistic Shortest Path Routing [LT'00]
 - Rank order nodes based on the expected transmissions (ETX, distance)
 - Optimal if <u>one packet</u> in network, but <u>unbounded delay</u> in high traffic
- Diversity Backpressure Routing [N'06]

- Routing Policy \Leftrightarrow rank ordering used to make routing decisions
- Opportunistic Shortest Path Routing [LT'00]
 - Rank order nodes based on the expected transmissions (ETX, distance)
 - Optimal if <u>one packet</u> in network, but <u>unbounded delay</u> in high traffic
- Diversity Backpressure Routing [N'06]
 - Rank orders nodes based on their current queue backlog

- Routing Policy \Leftrightarrow rank ordering used to make routing decisions
- Opportunistic Shortest Path Routing [LT'00]
 - Rank order nodes based on the expected transmissions (ETX, distance)
 - Optimal if <u>one packet</u> in network, but <u>unbounded delay</u> in high traffic
- Diversity Backpressure Routing [N'06]
 - Rank orders nodes based on their current queue backlog
 - Throughput optimal (bounded delay) but large delay in low traffic

- Routing Policy \Leftrightarrow rank ordering used to make routing decisions
- Opportunistic Shortest Path Routing [LT'00]
 - Rank order nodes based on the expected transmissions (ETX, distance)
 - Optimal if <u>one packet</u> in network, but <u>unbounded delay</u> in high traffic
- Diversity Backpressure Routing [N'06]
 - Rank orders nodes based on their current queue backlog
 - Throughput optimal (bounded delay) but large delay in low traffic
 - ... and some "unsuccessful" heuristics doing both [N'07] [YSR'09]

- Routing Policy \Leftrightarrow rank ordering used to make routing decisions
- Opportunistic Shortest Path Routing [LT'00]
 - Rank order nodes based on the expected transmissions (ETX, distance)
 - Optimal if <u>one packet</u> in network, but <u>unbounded delay</u> in high traffic
- Diversity Backpressure Routing [N'06]
 - Rank orders nodes based on their current queue backlog
 - Throughput optimal (bounded delay) but large delay in low traffic

... and some "unsuccessful" heuristics doing both [N'07] [YSR'09]

e.g. rank ordering based on the sum of ETX and backlog $_{6}$

Design of an opportunistic routing policy which **exhibits good delay performance** in all traffic conditions

Design of an opportunistic routing policy which **exhibits good delay performance** in all traffic conditions

Opportunistic Routing with Congestion Diversity (ORCD)

Design of an opportunistic routing policy which **exhibits good delay performance** in all traffic conditions

Opportunistic Routing with Congestion Diversity (ORCD)

• Nodes are ordered based on approximate expected delivery time

Design of an opportunistic routing policy which **exhibits good delay performance** in all traffic conditions

Opportunistic Routing with Congestion Diversity (ORCD)

• Nodes are ordered based on approximate expected delivery time

 $V_t(k) < V_t(j) \Longleftrightarrow k >_{\pi_i} j$

Design of an opportunistic routing policy which **exhibits good delay performance** in all traffic conditions

Opportunistic Routing with Congestion Diversity (ORCD)

• Nodes are ordered based on approximate expected delivery time

 $V_t(k) < V_t(j) \Longleftrightarrow k >_{\pi_i} j$

Fact: ORCD is throughput optimal.

[Naghshvar, Zhuang, Javidi 09]

Design of an opportunistic routing policy which **exhibits good delay performance** in all traffic conditions

Opportunistic Routing with Congestion Diversity (ORCD)

• Nodes are ordered based on approximate expected delivery time

$$V_t(k) < V_t(j) \iff k >_{\pi_i} j$$

Fact: ORCD is throughput optimal.

[Naghshvar, Zhuang, Javidi 09]

• Implementing ORCD requires extensive control overhead

Design of an opportunistic routing policy which **exhibits good delay performance** in all traffic conditions

Opportunistic Routing with Congestion Diversity (ORCD)

• Nodes are ordered based on approximate expected delivery time

$$V_t(k) < V_t(j) \iff k >_{\pi_i} j$$

Fact: ORCD is throughput optimal.

[Naghshvar, Zhuang, Javidi 09]

- Implementing ORCD requires extensive control overhead
 - Modifications of ORCD with lower overhead
 - Performance evaluation using simulations

Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $V_{P_i}(t) = 0.$

$$\begin{cases} V_D(t) = 0, \\ V_i(t) = Q_i(t) + \sum_{\mathbf{S} \subseteq \Omega} P(\mathbf{S} \mid i) \min_{j \in \mathbf{S}} V_j(t) \end{cases}$$

Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $(V_i(t) = 0)$

$$V_D(t) = 0,$$

$$V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} V_j(t)$$

• $Q_i(t)$: backlog of node *i* at time *t*

Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $(V_p(t) = 0,$

$$V_D(t) = 0,$$

$$V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} V_j(t)$$

• $Q_i(t)$: backlog of node *i* at time *t*

Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $(V_{-}(t) = 0)$

$$V_D(t) = 0,$$

$$V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} V_j(t)$$

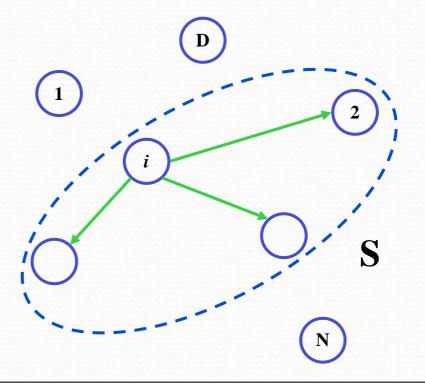
• $Q_i(t)$: backlog of node *i* at time *t*

Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $(V_i(t) = 0)$

$$V_D(t) = 0,$$

$$V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} V_j(t)$$

- $Q_i(t)$: backlog of node *i* at time *t*
- *P*(S|*i*): probability that S be the set of nodes that receive the packet transmitted by node *i*

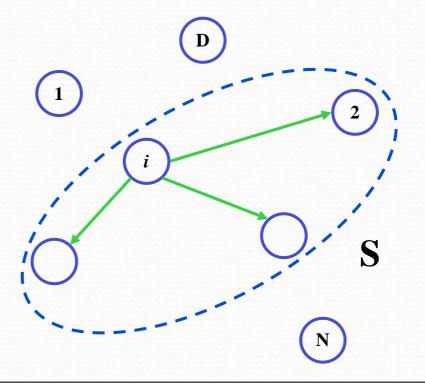


Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $(V_{-}(t) = 0)$

$$V_D(t) = 0,$$

$$V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} V_j(t)$$

- $Q_i(t)$: backlog of node *i* at time *t*
- *P*(S|*i*): probability that S be the set of nodes that receive the packet transmitted by node *i*

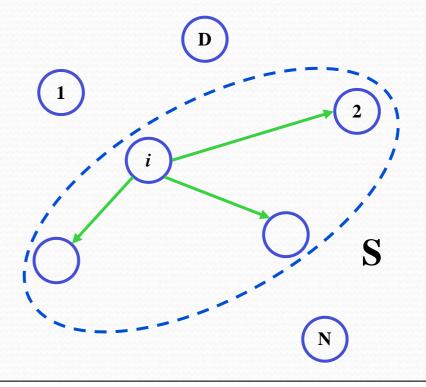


Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $(V_i(t) = 0)$

$$V_D(t) = 0,$$

$$V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} V_j(t))$$

- $Q_i(t)$: backlog of node *i* at time *t*
- *P*(S|*i*): probability that S be the set of nodes that receive the packet transmitted by node *i*



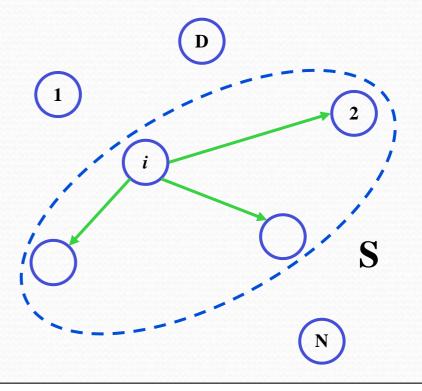
7

Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $(V_i(t) = 0)$

$$V_D(t) = 0,$$

$$V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S | i) \min_{j \in S} V_j(t))$$

- $Q_i(t)$: backlog of node *i* at time *t*
- *P*(S|*i*): probability that S be the set of nodes that receive the packet transmitted by node *i*
- $V_j(t)$: delivery time of node j

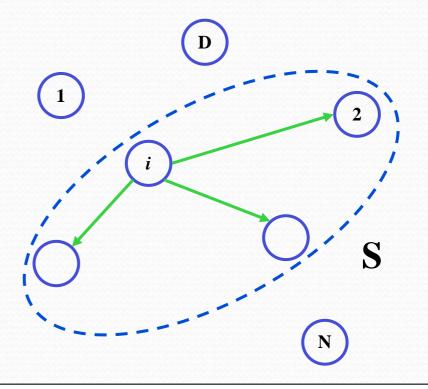


Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $(V_i(t) = 0)$

$$V_D(t) = 0,$$

$$V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} V_j(t))$$

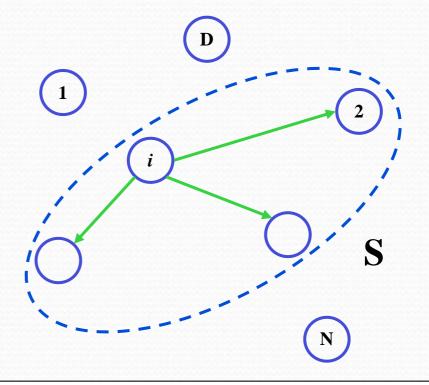
- $Q_i(t)$: backlog of node *i* at time *t*
- *P*(S|*i*): probability that **S** be the set of nodes that receive the packet transmitted by node *i*
- $V_j(t)$: delivery time of node j
- $\min_{j \in S} V_j(t)$: delivery time when **S** reached



Congestion measures $V_i(t)$ are solutions to the following fixed point equation: $(V_{-}(t) = 0)$

$$\begin{cases} V_D(t) = 0, \\ V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} V_j(t) \end{cases}$$

- $Q_i(t)$: backlog of node *i* at time *t*
- *P*(S|*i*): probability that **S** be the set of nodes that receive the packet transmitted by node *i*
- $V_j(t)$: delivery time of node j
- $\min_{j \in S} V_j(t)$: delivery time when **S** reached



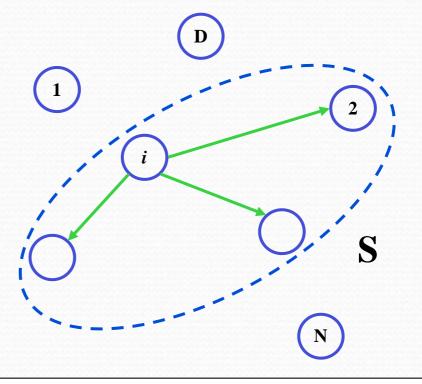
Congestion measures $V_i(t)$ are solutions to the following fixed point equation:

 $\begin{cases} V_D(t) = 0, \\ V_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} V_j(t) \end{cases}$

Local congestion at node *i*

- $Q_i(t)$: backlog of node *i* at time *t*
- *P*(S|*i*): probability that S be the set of nodes that receive the packet transmitted by node *i*
- $V_j(t)$: delivery time of node j
- $\min_{j \in S} V_j(t)$: delivery time when **S** reached

average delivery time of the neighbors



Centralized Computation:

Centralized Computation:

Stochastic generalization of Dijkstra algorithm

Centralized Computation:

Stochastic generalization of Dijkstra algorithm

1. Initialization:

 $V_{\rm D}(t) = 0, V_i(t) = \infty$ for all $i \in \Omega, i \neq D$

 $A = \{D\}, A^c$ is the complement of A with respect to Ω .

2. Computation:

$$J_{i}(t) = \frac{1}{P(i,A)} \left[Q_{i}(t) + \sum_{S:S \cap A \neq \phi} P(S \mid i) \min_{j \in S \cap A} V_{j}(t) \right], \quad i \in A^{c},$$

where, $P(i,A) = \sum_{S:S \cap A \neq \phi} P(S \mid i).$
3. Updtae:

$$i^* = \underset{i \in A^c}{\operatorname{arg\,min}} J_i(t), \ V_{i^*}(t) = J_{i^*}(t), \ A = A \bigcup \{i^*\}$$
4. Repeat steps 2 and 3 until $A = \Omega$

Centralized Computation:

Stochastic generalization of Dijkstra algorithm

• Centralized controller is responsible for:

- Collecting backlog information of all nodes in the network
- Computing congestion measures $V_i(t)$ (worst-case run time $O(N^2)$)
- Providing all nodes with the results of the computations

Centralized Computation:

Stochastic generalization of Dijkstra algorithm

Centralized controller is responsible for:

- Collecting backlog information of all nodes in the network
- Computing congestion measures $V_i(t)$ (worst-case run time $O(N^2)$)
- Providing all nodes with the results of the computations

It is not practical to compute $V_i(t)$ on every time slot.

- ORCD with infrequent computations (**Infreq-ORCD**)
 - Computation of congestion measures V_i is done every T slots
 - Routing decisions at time $nT \le t < (n+1)T$ are based on $V_i(nT)$

- ORCD with infrequent computations (**Infreq-ORCD**)
 - Computation of congestion measures V_i is done every T slots
 - Routing decisions at time $nT \le t < (n+1)T$ are based on $V_i(nT)$

- For sufficiently large *T*, the centralized controller has enough time to collect information and flood its decisions to the nodes in the network
- As expected, this lower overhead sacrifices the performance of ORCD

Iterative and Decentralized Computation:

Iterative and Decentralized Computation:

Stochastic generalization of distributed Bellman-Ford algorithm

Iterative and Decentralized Computation:

Stochastic generalization of distributed Bellman-Ford algorithm

$$\widetilde{V}_i^k(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} \widetilde{V}_j^{k-1}(t), \quad \text{for } k = 1, 2, \dots$$

Iterative and Decentralized Computation:

Stochastic generalization of distributed Bellman-Ford algorithm

$$\widetilde{V}_i^k(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} \widetilde{V}_j^{k-1}(t), \quad \text{for } k = 1, 2, \dots$$

• In each iteration *k*, all nodes are responsible for:

- Exchanging $\widetilde{V}_i^{k-1}(t)$ with their neighbors
- Computing $\widetilde{V}_i^k(t)$ using equation above

Iterative and Decentralized Computation:

Stochastic generalization of distributed Bellman-Ford algorithm

$$\widetilde{V}_i^k(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} \widetilde{V}_j^{k-1}(t), \quad \text{for } k = 1, 2, \dots$$

• In each iteration k, all nodes are responsible for:

- Exchanging $\widetilde{V}_i^{k-1}(t)$ with their neighbors
- Computing $\widetilde{V}_i^k(t)$ using equation above

$$\lim_{k \ge \infty} \widetilde{V}_i^k(t) = V_i(t)$$

Iterative and Decentralized Computation:

Stochastic generalization of distributed Bellman-Ford algorithm

$$\widetilde{V}_i^k(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} \widetilde{V}_j^{k-1}(t), \quad \text{for } k = 1, 2, \dots$$

• In each iteration k, all nodes are responsible for:

- Exchanging $\widetilde{V}_i^{k-1}(t)$ with their neighbors
- Computing $\widetilde{V}_i^k(t)$ using equation above

$$\lim_{k \ge \infty} \widetilde{V}_i^k(t) = V_i(t)$$

High overhead for each time slot t

Iterative and Decentralized Computation:

Stochastic generalization of distributed Bellman-Ford algorithm

$$\widetilde{V}_i^k(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} \widetilde{V}_j^{k-1}(t), \quad \text{for } k = 1, 2, \dots$$

• In each iteration k, all nodes are responsible for:

- Exchanging $\widetilde{V}_i^{k-1}(t)$ with their neighbors
- Computing $\widetilde{V}_i^k(t)$ using equation above

 $\lim_{k \ge \infty} \widetilde{V}_i^k(t) = V_i(t)$

High overhead for each time slot t

It is not practical to compute $V_i(t)$ using this algorithm.

Iterative ORCD with finite-round computations

• Number of iterations is limited to some K rounds :

$$\begin{split} \widetilde{V}_i^k(t) &= Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} \widetilde{V}_j^{k-1}(t), \quad \text{for} \quad 1 \le k \le K, \\ \widetilde{V}_i^0(t) &= \widetilde{V}_i^K(t-1). \end{split}$$

Iterative ORCD with finite-round computations

• Number of iterations is limited to some K rounds :

$$\begin{split} \widetilde{V}_i^k(t) &= Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} \widetilde{V}_j^{k-1}(t), \quad \text{for} \quad 1 \le k \le K, \\ \widetilde{V}_i^0(t) &= \widetilde{V}_i^K(t-1). \end{split}$$

Distributed ORCD (D-ORCD)

• Special case when K=1:

$$\widetilde{V}_i(t) = Q_i(t) + \sum_{S \subseteq \Omega} P(S \mid i) \min_{j \in S} \widetilde{V}_j(t-1).$$

Simulations

Simulations

• Comparing the delay performance of:

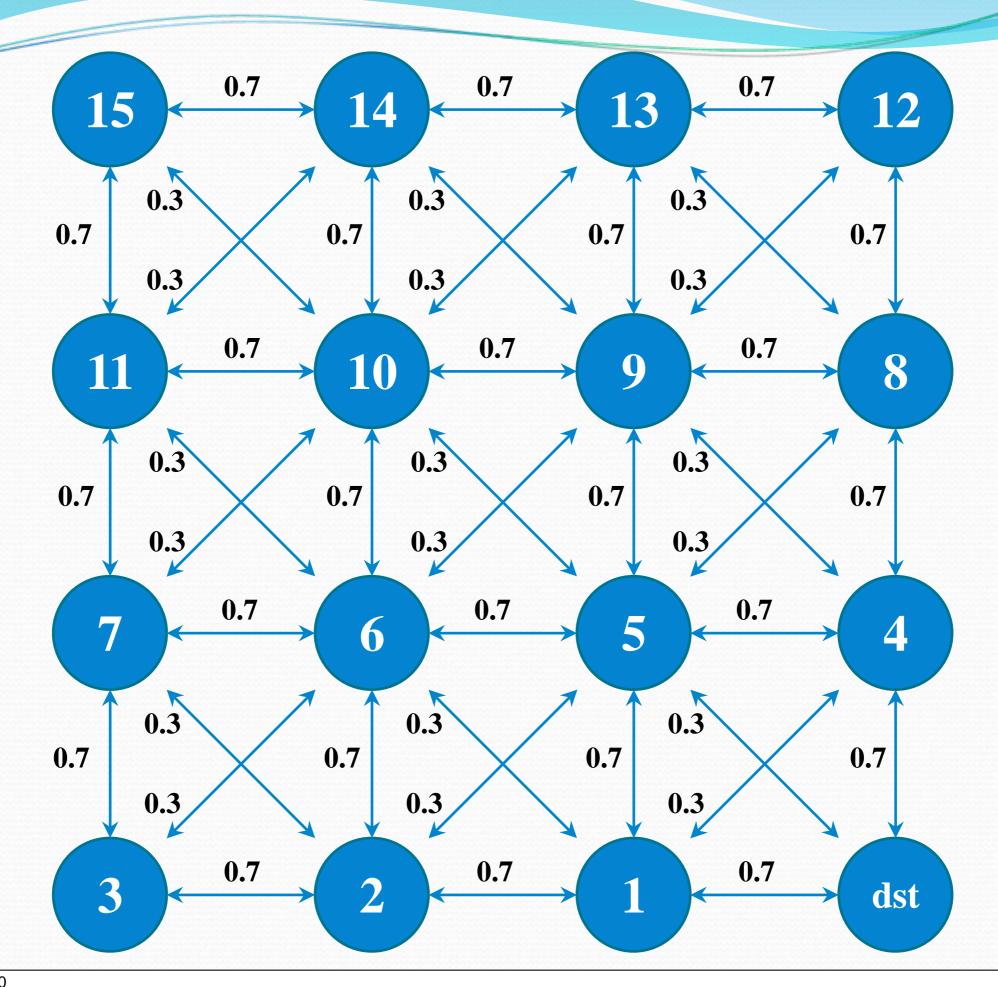
- ExOR, SR (expected hop-counts to the destination)
- **DIVBAR** (queue backlog)
- E-DIVBAR (queue backlog + expected hop-counts)
- ORCD, Infreq-ORCD, and D-ORCD (expected delivery time)

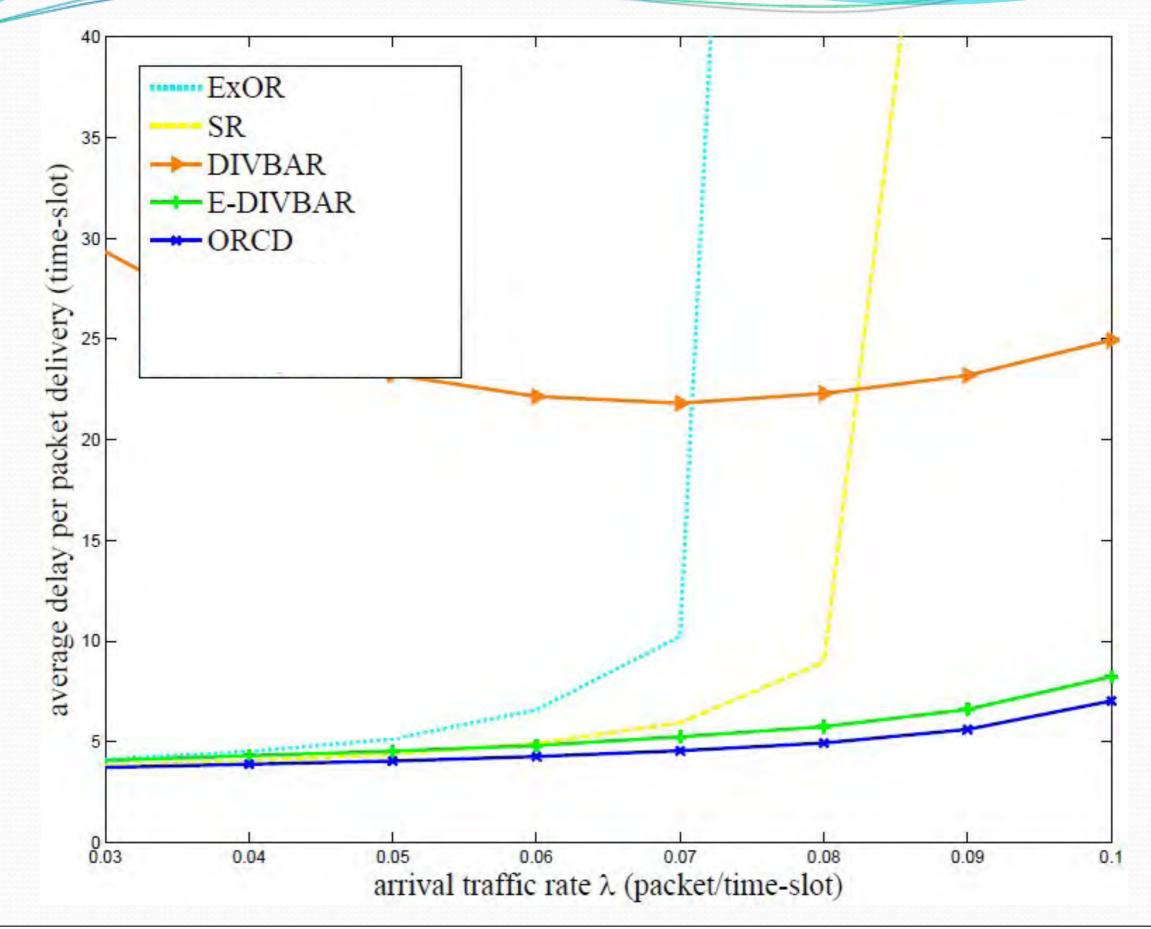
Simulations

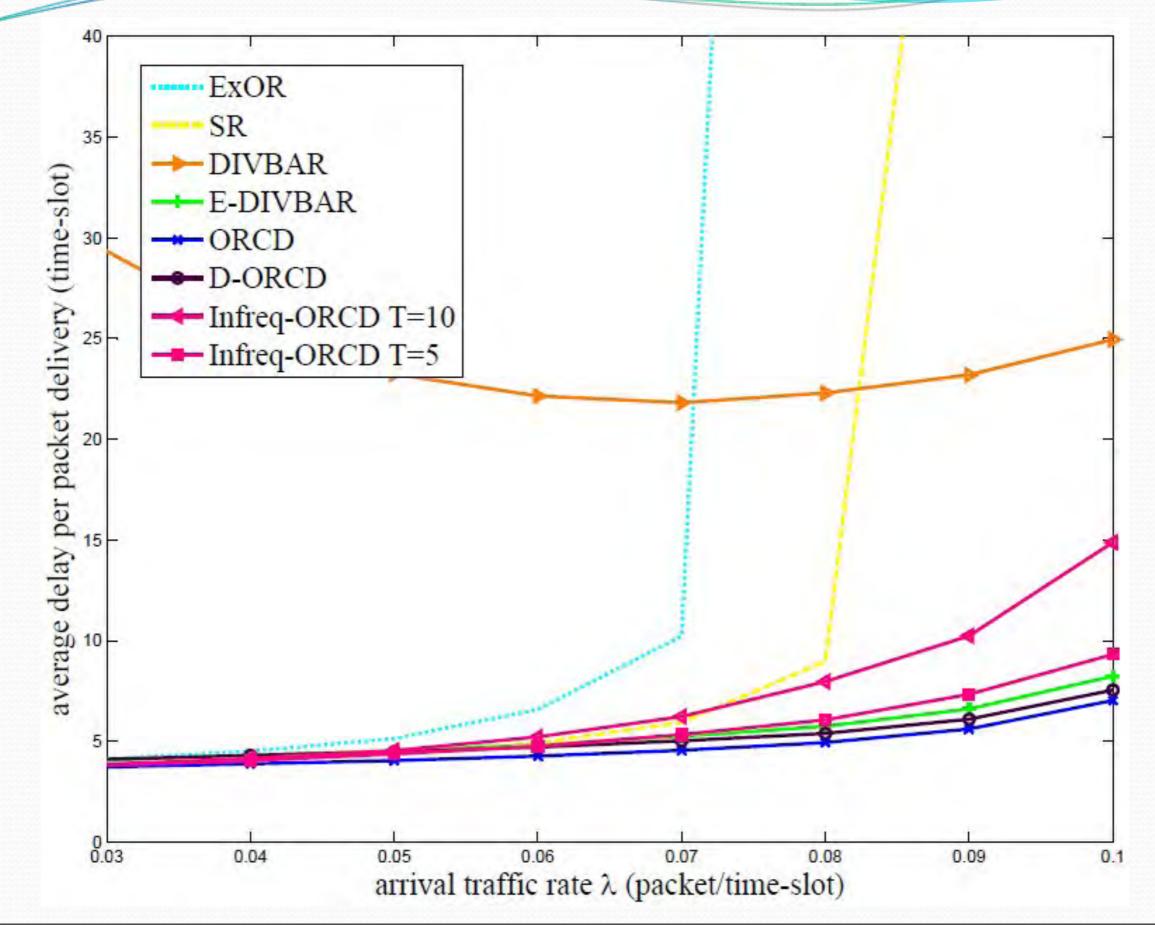
• Comparing the delay performance of:

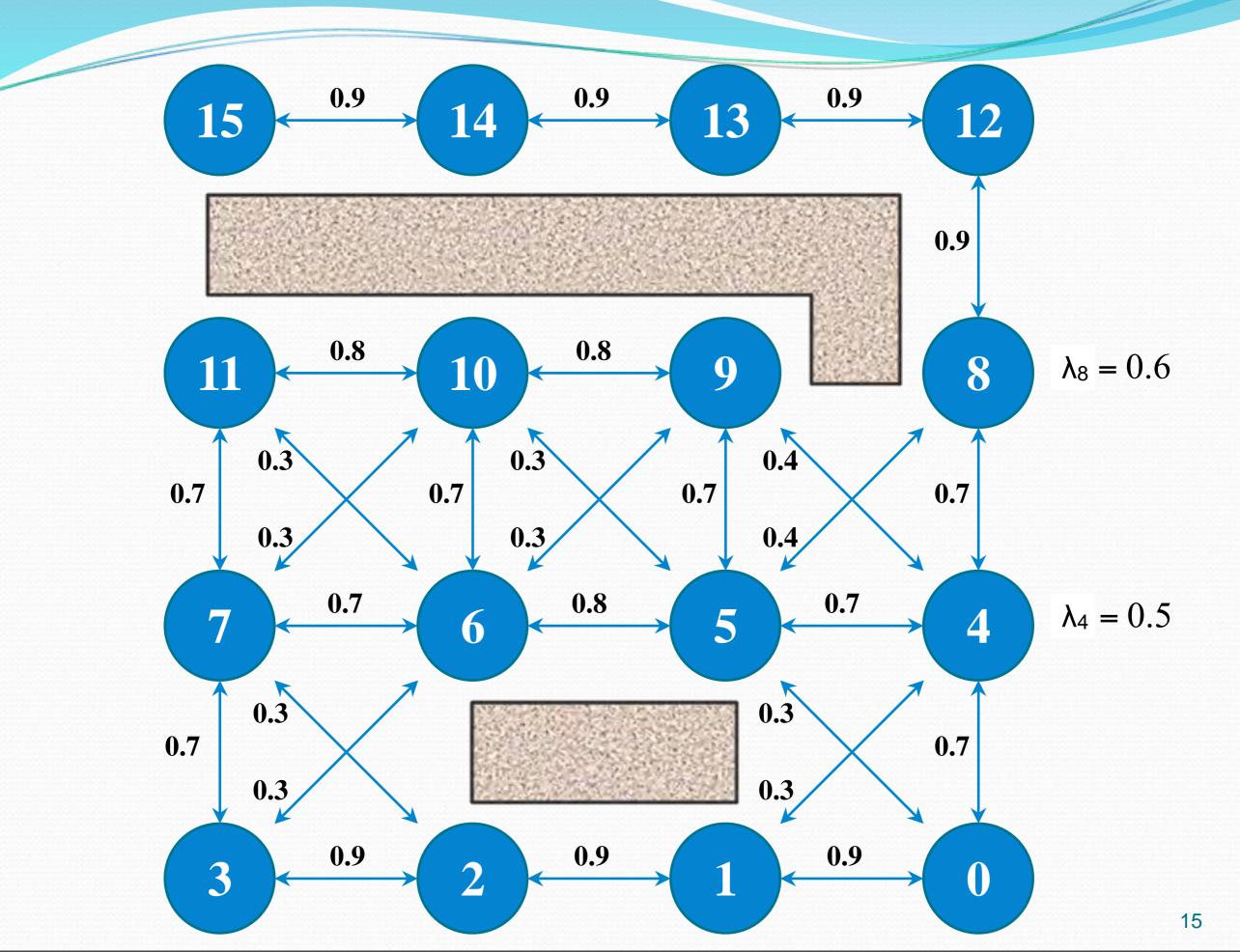
- ExOR, SR (expected hop-counts to the destination)
- **DIVBAR** (queue backlog)
- E-DIVBAR (queue backlog + expected hop-counts)
- ORCD, Infreq-ORCD, and D-ORCD (expected delivery time)

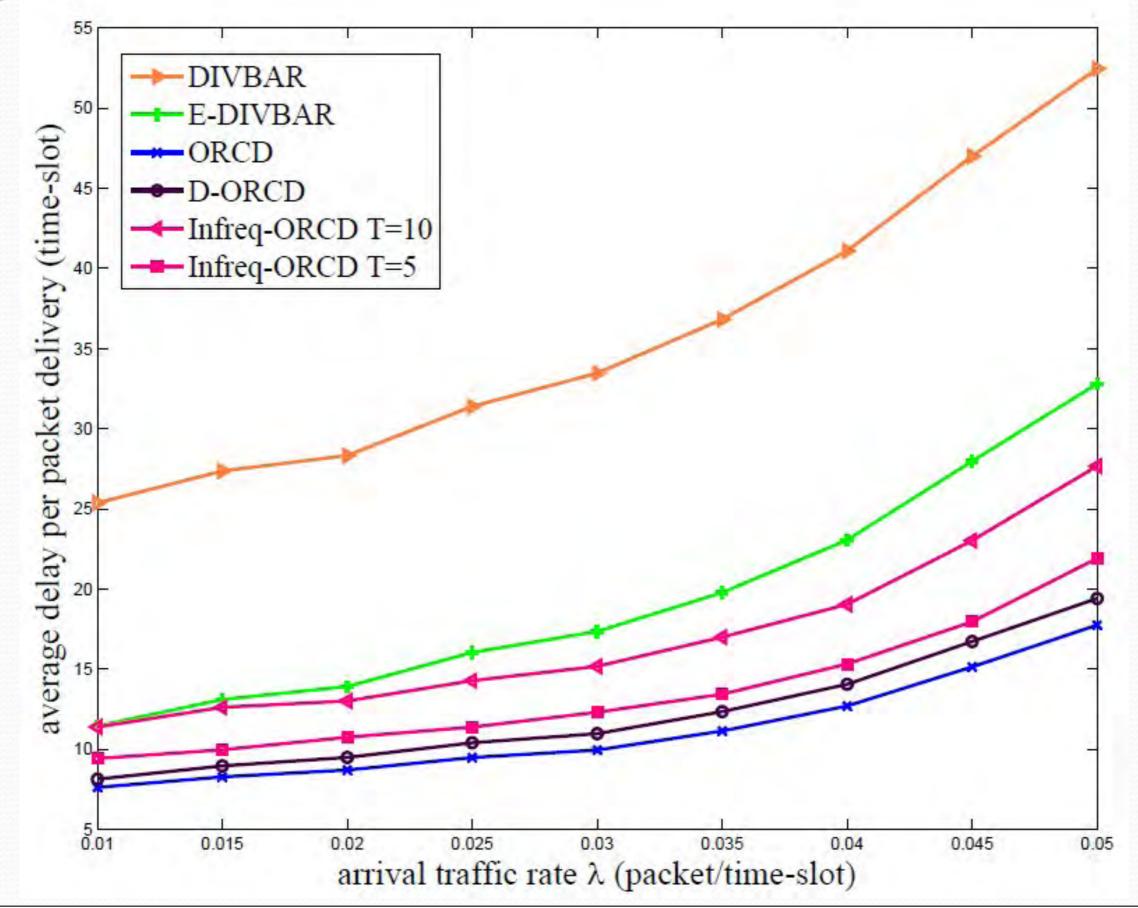
Routing Policy	Throughput Optimal	Delay Performance
ExOR, SR	×	Poor delay in high traffic
DIVBAR	✓	Poor delay in low traffic
E-DIVBAR	\checkmark	?
ORCD & its variants	✓	?











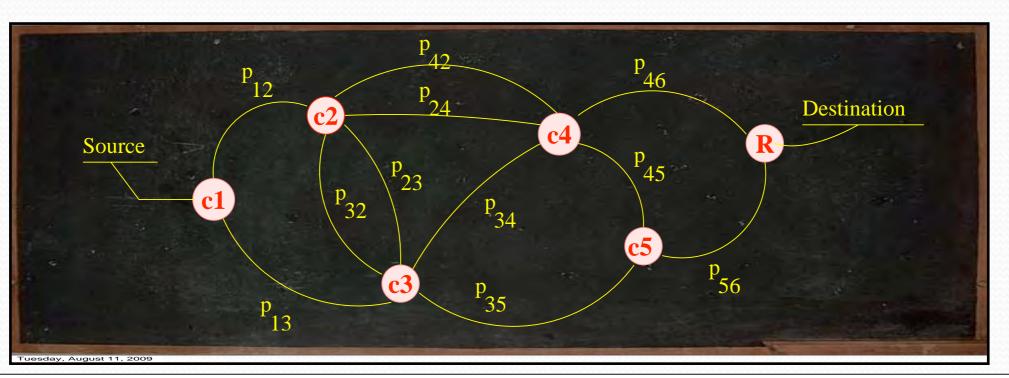
Summary

Summary

Routing Policy	Throughput Optimal	Delay Performance
ExOR, SR	×	Poor delay in high traffic
DIVBAR	\checkmark	Poor delay in low traffic
E-DIVBAR	\checkmark	Depends on topology & traffic
ORCD		Good delay performance in all traffic conditions
Infreq-ORCD	\checkmark	Depends on network & traffic
D-ORCD	?	Good delay performance in all traffic conditions

Future and On-going Research

- Extensions:
 - multi-rate and multi-commodity
 - Ack explosion: limiting neighbor set
- Interference: scheduled MAC vs. random access
- Multi-user detection, cooperation, fancy PHY
- Network coding



Monday, May 17, 2010