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• Network consists of nodes: {1, 2, . . . , d}

• Packets are destined for d

• At(i): # of packets originating at node i at time t
• Bounded and mixing random process with rate λi

• Slotted time/packet: Node i’s tx of one packet takes one time slot

• Node i’s tx successfully rcved and acked by subset S of neighbors 
with probability P(S|i) independent of other tx (orthogonal tx)
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• Routing decision frame 

• The node responsible, i, transmits (locally broadcasts)

• Nodes St successfully decode & acknowledge reception (tx outcome)

• Actions: 1) choose a neighbor in St as the next relay, or 2) retransmit

• Routing policy maps actions to tx outcomes
• Distributed: “routing token” + three way hand-shake

Objective:  
Deliver the packets to the destination with small expected delay
• (per packet) delay ≡ interval between arrival time to delivery time
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• Routing Policy  ⇔ rank ordering used to make routing decisions 

• Opportunistic Shortest Path Routing [LT’00]

• Rank order nodes based on the expected transmissions (ETX, distance)

• Optimal if one packet in network, but unbounded delay in high traffic

• Diversity Backpressure Routing [N’06]

• Rank orders nodes based on their current queue backlog

• Throughput optimal (bounded delay) but large delay in low traffic

... and some “unsuccessful” heuristics doing both [N’07] [YSR’09]
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Design of an opportunistic routing policy which exhibits good 
delay performance in all traffic conditions 

5

Opportunistic Routing with Congestion Diversity (ORCD)
 Nodes are ordered based on approximate expected delivery time

 Implementing ORCD requires extensive control overhead
 Modifications of ORCD with lower overhead
 Performance evaluation using simulations

[Naghshvar, Zhuang, Javidi 09]
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Centralized Computation:
   Stochastic generalization of Dijkstra algorithm

Monday, May 17, 2010



Computation of Vi (t)’s  (Cont.)

8

Centralized Computation:
   Stochastic generalization of Dijkstra algorithm

1. Initialization:

2. Computation:

3. Updtae:

4. Repeat steps 2 and 3 until  A=Ω
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Centralized Computation:
   Stochastic generalization of Dijkstra algorithm

Centralized controller is responsible for:
 Collecting backlog information of all nodes in the network
 Computing congestion measures Vi (t) (worst-case run time O(N2) )
 Providing all nodes with the results of the computations
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Centralized Computation:
   Stochastic generalization of Dijkstra algorithm

It is not practical to compute Vi (t) on every time slot.

Centralized controller is responsible for:
 Collecting backlog information of all nodes in the network
 Computing congestion measures Vi (t) (worst-case run time O(N2) )
 Providing all nodes with the results of the computations
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 ORCD with infrequent computations (Infreq-ORCD)

 Computation of congestion measures Vi  is done every T slots

 Routing decisions at time nT ≤ t < (n + 1)T are based on Vi (nT)

9
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 ORCD with infrequent computations (Infreq-ORCD)

 Computation of congestion measures Vi  is done every T slots

 Routing decisions at time nT ≤ t < (n + 1)T are based on Vi (nT)

9

 For sufficiently large T, the centralized controller has enough time to collect 
information and flood its decisions to the nodes in the network

 As expected, this lower overhead sacrifices the performance of ORCD
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Iterative and Decentralized Computation:
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Iterative and Decentralized Computation:
   Stochastic generalization of distributed Bellman-Ford algorithm
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Iterative and Decentralized Computation:
   Stochastic generalization of distributed Bellman-Ford algorithm
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Iterative and Decentralized Computation:
   Stochastic generalization of distributed Bellman-Ford algorithm

 In each iteration k, all nodes are responsible for:
 Exchanging             with their neighbors
 Computing             using equation above
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Iterative and Decentralized Computation:
   Stochastic generalization of distributed Bellman-Ford algorithm

 In each iteration k, all nodes are responsible for:
 Exchanging             with their neighbors
 Computing             using equation above
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Iterative and Decentralized Computation:
   Stochastic generalization of distributed Bellman-Ford algorithm

 In each iteration k, all nodes are responsible for:
 Exchanging             with their neighbors
 Computing             using equation above

High overhead for each time slot t
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Iterative and Decentralized Computation:
   Stochastic generalization of distributed Bellman-Ford algorithm

It is not practical to compute Vi (t) using this algorithm.

 In each iteration k, all nodes are responsible for:
 Exchanging             with their neighbors
 Computing             using equation above

High overhead for each time slot t
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 Iterative ORCD with finite-round computations
 Number of iterations is limited to some K rounds : 
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 Distributed ORCD (D-ORCD)
 Special case when K=1:

 Iterative ORCD with finite-round computations
 Number of iterations is limited to some K rounds : 
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Comparing the delay performance of: 

 ExOR, SR (expected hop-counts to the destination)
 DIVBAR (queue backlog)
 E-DIVBAR (queue backlog + expected hop-counts)
 ORCD, Infreq-ORCD, and D-ORCD (expected delivery time) 
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Simulations

12

Comparing the delay performance of: 

 ExOR, SR (expected hop-counts to the destination)
 DIVBAR (queue backlog)
 E-DIVBAR (queue backlog + expected hop-counts)
 ORCD, Infreq-ORCD, and D-ORCD (expected delivery time) 

Routing Policy Throughput 
Optimal

Delay Performance

ExOR, SR  Poor delay in high traffic

DIVBAR  Poor delay in low traffic

E-DIVBAR  ?

ORCD & its variants  ?
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Routing Policy Throughput 
Optimal

Delay Performance

ExOR, SR  Poor delay in high traffic

DIVBAR  Poor delay in low traffic

E-DIVBAR  Depends on topology & traffic

ORCD  Good delay performance in all 
traffic conditions

Infreq-ORCD  Depends on network & traffic

D-ORCD ? Good delay performance in all 
traffic conditions
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Tuesday, August 11, 2009

Future and On-going Research
• Extensions: 

• multi-rate and multi-commodity
• Ack explosion: limiting neighbor set

• Interference: scheduled MAC vs. random access 
• Multi-user detection, cooperation, fancy PHY
• Network coding
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