Robust Interference Alignment

Syed A. Jafar
Center for Pervasive Communications and Computing (CPCC)
Electrical Engineering and Computer Science

University of California Irvine

MISO Broadcast Channel

- Capacity known with perfect CSIT, CSIR [Weingarten, Steinberg, Shamai 03]
- Capacity unknown without full CSIT even for SISO setting.
- Even capacity-prelog (DoF) unknown for the MISO setting.

MISO BC DoF with Full CSIT

Can create a non-interfering channel to each user per time slot.
2 Users, 2 antennas at BS, DoF $=2$

DoF of Compound MISO BC

$$
\left.\mathrm{DoF}=1+\frac{1}{2} \quad \text { (Optimal! }\right)
$$

[Weingarten, Shamai, Kramer, ITA 07]

DoF of Compound MISO BC

[Weingarten, Shamai, Kramer, ITA 07]
Conjecture:

[Gou, Jafar, Wang, 09]
DoF $=1+\frac{1}{2}$

Interference Alignment at the Transmitter

- Two symbol extension (constant channel).
- Linear beamforming.
- Asymmetric complex signaling.

DoF of Compound MISO BC

M antennas at $B S, K$ Users, J generic states per user
[Gou, Jafar, Wang 09]
[Maddah-Ali 09]

$$
\mathrm{DoF}=\frac{M K}{M+K-1}
$$

- Does not depend on J provided $J \geq M$.
- Same as the X channel with M Tx, K Rx.
- No cooperation needed between Tx antennas.

$$
\begin{aligned}
& \mathbf{h}^{[1]} \in\left\{\mathbf{h}_{1}^{[1]}, \mathbf{h}_{2}^{[1]}, \ldots, \mathbf{h}_{J_{1}}^{[1]}\right\} \\
& \mathbf{h}^{[2]} \in\left\{\mathbf{h}_{1}^{[2]}, \mathbf{h}_{2}^{[2]}, \ldots, \mathbf{h}_{J_{2}}^{[2]}\right\}
\end{aligned}
$$

Compound MISO BC reduces to Compound X Channel Compound X Channel does not lose DoF. Why?

What is the main challenge of the compound setting?

How to Simultaneously Satisfy an Arbitrarily Large Number of Interference Alignment Conditions

Have we seen this problem before ?

Yes, similar challenge is overcome for the K user interference channel [Cadambe, Jafar, IT Trans. 08]

Interference Alignment Scheme of [CJ08]

Every transmitter uses the SAME set of m beamforming vectors.

$$
\mathbf{V}=\left[V_{1}, V_{2}, \cdots, V_{m}\right]
$$

What is the interference space at Receiver 1 ?

Interference Alignment Scheme of [CJ08]

Every transmitter uses the SAME set of m beamforming vectors.

$$
\mathbf{V}=\left[V_{1}, V_{2}, \cdots, V_{m}\right]
$$

Interference Alignment Scheme of [CJ08]

Every transmitter uses the SAME set of m beamforming vectors.

$$
\mathbf{V}=\left[V_{1}, V_{2}, \cdots, V_{m}\right]
$$

All the interference at all the receivers: \mathcal{I}

Goal: Make $\mathbf{V} \equiv \mathcal{I}$

Interference Alignment Scheme of [CJ08]

Every transmitter uses the SAME set of m beamforming vectors.

$$
\mathbf{V}=\left[V_{1}, V_{2}, \cdots, V_{m}\right]
$$

All the interference at all the receivers: \mathcal{I}

Goal: Make $\mathbf{V} \equiv \mathcal{I}$

Goal: Simultaneously satisfy "N" Alignment Constraints: $\operatorname{span}(\mathbf{V}) \equiv \operatorname{span}\left(T_{1} \mathbf{V}\right) \equiv \operatorname{span}\left(T_{2} \mathbf{V}\right) \equiv \cdots \equiv \operatorname{span}\left(T_{N} \mathbf{V}\right)$

Initialize: $\mathbf{V}_{0}=\mathbf{1}$

$$
\mathbf{V}_{1}=\left\{\mathbf{1}, T_{1} \mathbf{1}, \cdots, T_{N} \mathbf{1}\right\}
$$

$$
\mathbf{V}_{2}=\left\{\mathbf{1}, \cdots, T_{i} \mathbf{1}, \cdots, T_{i} T_{j} \mathbf{1}, \cdots, T_{i}^{2} \mathbf{1}\right\}
$$

$$
\mathbf{v}_{n}=\left\{T_{1}^{\alpha_{1}} T_{2}^{\alpha_{2}} \cdots T_{N}^{\alpha_{N}} \mathbf{1}, \alpha_{1}+\cdots+\alpha_{N} \leq n\right\}
$$

$$
\mathbf{v}_{n+1}=\left\{T_{1}^{\alpha_{1}} T_{2}^{\alpha_{2}} \cdots T_{N}^{\alpha_{N}} \mathbf{1}, \alpha_{1}+\cdots+\alpha_{N} \leq n+1\right\}
$$

$\left|\mathbf{v}_{n}\right|=\binom{n+N}{n}$

$$
|\mathcal{I}|=\binom{n+N+1}{n+1}
$$

$$
\frac{|\mathbf{V}|}{|\mathcal{I}|}=\frac{n+1}{n+N+1} \rightarrow 1 \text { as } n \rightarrow \infty
$$

Compound setting originally intended to capture channel uncertainty,

to show loss of DoF

Interference Alignment scheme of [CJ08]

- Strength - Unlimited alignment potential (DoF do not collapse).
- Weakness - Needs perfect knowledge of all states.

ROBUST interference alignment ?

What if instantaneous channel coefficient values are completely unknown to transmitter (and receivers)?

Blind Interference Alignment

Users are statistically indistinguishable DoF $=1$
[Caire, Shamai '00, Jafar '05]

Users are not statistically indistinguishable
[Lapidoth, Shamai, Wigger, Allerton 05]
DoF $\leq \frac{4}{3}$
Conjecture: DoF $=1$.
(No multiplexing of signals is possible)

What does the transmitter know?

Knows the channel statistics.
Knows the fading autocorrelation function.

Goal: Achieve $\frac{4}{3}$ DoF

3 Dimensional Signaling

Time \rightarrow

Time \rightarrow

3 Dimensional Signaling
Goal
Send 4 interference-free signals over three dimensions

Transmit antennas do not

		1	$\mathbf{2}$
3			
	$\mathbf{h}^{[1]}(1)$	$\mathbf{h}^{[1]}(2)$	$\mathbf{h}^{[1]}(2)$
User 2	$\mathbf{h}^{[2]}(1)$	$\mathbf{h}^{[2]}(1)$	$\mathbf{h}^{[2]}(2)$

Receivers do not need CSIR to remove interference.

3 Dimensional Signaling

Goal

Send 4 interference-free signals over three dimensions

Transmit antennas do not need to share data.

	1	$\mathbf{1}$	$\mathbf{3}$
User 1	$\mathbf{h}^{[1]}(1)$	$\mathbf{h}^{[1]}(2)$	$\mathbf{h}^{[1]}(2)$
User 2	$\mathbf{h}^{[2]}(1)$	$\mathbf{h}^{[2]}(1)$	$\mathbf{h}^{[2]}(2)$

Receivers do not need CSIR to remove interference.

$$
\begin{array}{ccc}
t=3 & t=2 & t=1 \\
x_{1}^{[2]} & x_{1}^{[1]}+x_{1}^{[2]} & x_{1}^{[1]} \\
x_{2}^{[2]} & x_{2}^{[1]}+x_{2}^{[2]} & x_{2}^{[1]}
\end{array}
$$

3 Dimensional Signaling

Goal

Send 4 interference-free signals over three dimensions

Transmit antennas do not

	1	$\mathbf{1}$	3
User 1	$\mathbf{h}^{[1]}(1)$	$\mathbf{h}^{[1]}(2)$	$\mathbf{h}^{[1]}(2)$
User 2	$\mathbf{h}^{[2]}(1)$	$\mathbf{h}^{[2]}(1)$	$\mathbf{h}^{[2]}(2)$

$$
\begin{array}{ccc}
t=3 & t=2 & t=1 \\
x_{1}^{[2]} & x_{1}^{[1]}+x_{1}^{[2]} & x_{1}^{[1]}
\end{array}
$$

Intuition for Blind Interference Alignment

M transmit antennas.
Each sends an independent symbol.
Repeat same symbol M times.
One receive antenna.

Channel changes every time
Receive M independent linear equations.
Symbols can be resolved ($M \times M$ MIMO)

Channel stays constant
Receive same equation M times. Symbols cannot be resolved. (Interference Alignment)

Idea - Repeat symbols where desired users' channel changes undesired users' channels remain the same.

Idea - Repeat symbols where desired users' channel changes undesired users' channels remain the same.

	1	2	3
User 1	$\mathbf{h}^{[1]}(1)$	$\mathrm{h}^{[1]}(2)$	$h^{[1]}(2)$
User 2	$\mathrm{h}^{[2]}(1)$	$\mathrm{h}^{[2]}(1)$	$h^{[2]}(2)$

Time \rightarrow

$$
\begin{array}{ccc}
t=1 & t=2 & t=3 \\
x_{1}^{[1]} & x_{1}^{[1]}+x_{1}^{[2]} & x_{1}^{[2]} \\
x_{2}^{[1]} & x_{2}^{[1]}+x_{2}^{[2]} & x_{2}^{[2]}
\end{array}
$$

2 user 3×1 MISO BC

2 user $M \times 1$ MISO BC

Conclusion

We asked for a lot

- Transmitter does not have CSIT can still align interference
- Receiver does not have CSIR can still cancel interference
- Transmit antennas can be distributed

... and it still works!

Robust Interference Alignment is Possible

> ... and the dream lives on

