A Game-Theoretic Perspective of the Interference Channel: Impact of Coordination and Bargaining

X. Liu, E. Erkip

Polytechnic Institute of New York University

May 2010

- Wireless systems often limited by *interference*.
 - Modeled by the *interference channel (IC)*
- Usual information theoretical approach:
 - *Full cooperation* among users for codebook and rate selection, e.g. Han-Kobayashi (H-K) scheme
- In practice, users may be *selfish* and only interested in maximizing their own utilities (rates).
- When there is no coordination, interference is often treated as noise, *suboptimal* in most cases.
- What if users are selfish but willing to coordinate?

- For users with conflicting interests, achieving efficiency and fairness can be studied using game theory.
- Two common game theoretical approaches:
 - Noncooperative game theory
 - Cooperative game theory
 - Nash bargaining solution (NBS)

- Assume each user is selfish but willing to coordinate only when an incentive exists.
- Formulate interaction between users as a bargaining problem.
- Allow users to adopt a simple H-K type scheme with an optimal (or close to optimal) fixed power split.
- Two-phase coordination
 - Phase 1: Users negotiate and decide to use the H-K scheme only if both have incentives.
 - Phase 2: The operating point on the H-K region is selected using NBS from cooperative game theory.

Background: Interference and Game Theory

- Gaussian interference games using noncooperative game theory, and assuming interference is treated as noise [Etkin et al 07, Larsson et al 08].
- Noncooperative information theoretical games assuming each user can select any encoding and decoding strategy [Berry and Tse 08, 09].
- Noncooperative rate game over a Gaussian MAC [Gajic et al 08].
- NBS for interfering links in multi-cell OFDMA [Han et al 05].
- NBS for an orthogonal scheme (TDM/FDM) over fading IC [Leshem et al 08].

Channel Model

• Two-user Gaussian IC:

$$Y_1 = X_1 + \sqrt{a}X_2 + Z_1 Y_2 = \sqrt{b}X_1 + X_2 + Z_2$$

- Assumptions:
 - Users employ Gaussian codebooks with equal length codewords.
 - A simplified H-K type scheme with a fixed power split and no time-sharing.
- $\alpha \in [0, 1]$ and $\beta \in [0, 1]$: Private message power ratios of user 1 and user 2 respectively.
- \mathcal{F} : Achievable rate pairs $(R_1, R_2) \in \mathbb{R}^2_+$

Achievable Rate Region \mathcal{F}

$$\begin{aligned} R_1 &\leq \phi_1 = C\left(\frac{P_1}{1+a\beta P_2}\right) \\ R_2 &\leq \phi_2 = C\left(\frac{P_2}{1+b\alpha P_1}\right) \\ R_1 + R_2 &\leq \phi_3 = \min\{\phi_{31}, \phi_{32}, \phi_{33}\} \end{aligned}$$

with

$$\begin{split} \phi_{31} &= C\left(\frac{P_1 + a(1-\beta)P_2}{1+a\beta P_2}\right) + C\left(\frac{\beta P_2}{1+b\alpha P_1}\right)\\ \phi_{32} &= C\left(\frac{\alpha P_1}{1+a\beta P_2}\right) + C\left(\frac{P_2 + b(1-\alpha)P_1}{1+b\alpha P_1}\right)\\ \phi_{33} &= C\left(\frac{\alpha P_1 + a(1-\beta)P_2}{1+a\beta P_2}\right) + C\left(\frac{\beta P_2 + b(1-\alpha)P_1}{1+b\alpha P_1}\right)\\ 2R_1 + R_2 &\leq \phi_4 &= C\left(\frac{P_1 + a(1-\beta)P_2}{1+a\beta P_2}\right) + C\left(\frac{\alpha P_1}{1+a\beta P_2}\right)\\ &+ C\left(\frac{\beta P_2 + b(1-\alpha)P_1}{1+b\alpha P_1}\right)\\ R_1 + 2R_2 &\leq \phi_5 &= C\left(\frac{P_2 + b(1-\alpha)P_1}{1+b\alpha P_1}\right) + C\left(\frac{\beta P_2}{1+b\alpha P_1}\right)\\ &+ C\left(\frac{\alpha P_1 + a(1-\beta)P_2}{1+a\beta P_2}\right) \end{split}$$

where $C(x) = 1/2 \log_2(1+x)$.

Achievable Rate Region in Matrix Form

- Denote the H-K scheme that achieves the above rate region *F* by HK(α, β).
- \mathcal{F} can be represented in a matrix form as $\mathcal{F} = \{\mathbf{R} | \mathbf{R} \ge \mathbf{0}, \mathbf{R} \le \mathbf{R}^1, \text{ and } \mathbf{A}\mathbf{R} \le \mathbf{B}\}$, where $\mathbf{R} = (R_1 R_2)^t$, $\mathbf{R}^1 = (\phi_1 \phi_2)^t$, $\mathbf{B} = (\phi_3 \phi_4 \phi_5)^t$, and

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right)^t$$

Bargaining Problem for Rates

• Feasible set:

- Set of all possible agreements that users can jointly achieve.
 - The rate region \mathcal{F} achieved by $HK(\alpha, \beta)$.

Disagreement point:

- Rate allocation that results when users fail to agree.
 - Each user treats the other's signal as noise $\mathbf{R}^0 = (C(\frac{P_1}{1+aP_2}) C(\frac{P_2}{1+bP_1}))^t$.
- Bargaining problem represented by $(\mathcal{F}, \mathbf{R}^0)$.

Definition: $(\mathcal{F}, \mathbb{R}^0)$ is *essential* iff $\mathcal{F} \cap {\mathbb{R} | \mathbb{R} > \mathbb{R}^0}$ is nonempty.

 $\mathbf{R}^* = \mathbf{\Phi}(\mathcal{F}, \mathbf{R}^0)$ is a NBS for $(\mathcal{F}, \mathbf{R}^0)$, if the following are satisfied:

- **1** Individual Rationality: $\Phi_i(\mathcal{F}, \mathbf{R}^0) \ge R_i^0, \forall i$
- **2** Feasibility: $\Phi(\mathcal{F}, \mathbb{R}^0) \in \mathcal{F}$
- **③** Pareto Optimality: $\Phi(\mathcal{F}, \mathbb{R}^0)$ is Pareto optimal.
- $\label{eq:convex_set} \bigcirc \mbox{ Independence of Irrelevant Alternatives: For any closed convex set } \mathcal{G}, \mbox{ if } \mathcal{G} \subseteq \mathcal{F} \mbox{ and } \Phi(\mathcal{F}, R^0) \in \mathcal{G}, \mbox{ then } \Phi(\mathcal{G}, R^0) = \Phi(\mathcal{F}, R^0).$
- Symmetry: If $R_1^0 = R_2^0$, and $\{(R_2, R_1) | (R_1, R_2) \in \mathcal{F}\} = \mathcal{F}$, then $\Phi_1(\mathcal{F}, \mathbf{R}^0) = \Phi_2(\mathcal{F}, \mathbf{R}^0)$.

Theorem

The unique solution $\Phi(\mathcal{F},R^0)$ satisfying all six axioms above is given by,

$$\boldsymbol{\Phi}(\mathcal{F}, \mathbf{R}^0) = \arg \max_{\mathbf{R} \in \mathcal{F}, \mathbf{R} \geq \mathbf{R}^0} \prod_{i=1}^2 (R_i - R_i^0)$$

• The capacity region C is given by (R_1, R_2) such that

$$R_i \le C(P_i), i \in \{1, 2\}$$

 $R_1 + R_2 \le \phi_0 = C(P_1 + P_2)$

- If users fully cooperate, any rate pair is achievable.
- Treating the other user's signal as noise leads to rate $R_i^0 = C(\frac{P_i}{1+P_{3-i}})$ for user *i*.
 - Use as the disagreement point.
- Nash bargaining problem: (C, \mathbf{R}^0)

Proposition

There exists a unique NBS for the bargaining problem (C, \mathbf{R}^0) , given by $\mathbf{R}^* = (R_1^0 + \frac{1}{\mu_1}, R_2^0 + \frac{1}{\mu_1})$ where $\mu_1 = \frac{2}{\phi_0 - R_1^0 - R_2^0}$.

Proof: Formulate the Nash optimization problem and invoke the KKT conditions.

Gaussian MAC NBS

 $SNR_1 = 15dB$, $SNR_2 = 20dB$

Two-Phase Mechanism for Gaussian IC

- Phase 1:
 - Negotiate for a simple H-K scheme that has the potential to improve individual rates for both.
 - Negotiation breakdown if one user does not have an incentive to cooperate.
- Phase 2:
 - Bargain for a fair rate pair over the achievable rate region of the H-K scheme agreed on in Phase 1.

Phase 1 Incentive Conditions: Strong Interference

- $a \ge 1$ and $b \ge 1$:
 - Choose optimal $\alpha = \beta = 0$.
 - Bargaining problem $(\mathcal{F}, \mathbf{R}^0)$ is essential, both users always have incentives to cooperate.

Phase 1 Incentive Conditions: Weak Interference

- a < 1 and b < 1:
 - Use power splits $\alpha = \min(1/(bP_1), 1)$ and $\beta = \min(1/(aP_2), 1)$.
 - At most 1-bit away from the capacity [Etkin, Tse, Wang 08]
 - For $bP_1 \leq 1$, $\mathsf{HK}(1,\beta)$ doesn't improve user 2's rate
 - User 2 does not have an incentive to cooperate.
 - $\bullet\,$ Both users can improve upon ${\bf R}^0$ and agree to cooperate only when
 - $aP_2 > 1$, $bP_1 > 1$ and $\mathcal{F} \cap \{\mathbf{R} > \mathbf{R}^0\}$ is nonempty for $HK(1/(bP_1)1/(aP_2))$,

Phase 1 Incentive Conditions: Mixed Interference

- a < 1 and $b \ge 1$:
 - Use near-optimal power splits $\alpha = 0$ and $\beta = \min(1/(aP_2), 1)$.
 - Similar to the weak case, both users agree to cooperate if $aP_2 > 1$ and $\mathcal{F} \cap \{\mathbf{R} > \mathbf{R}^0\}$ is nonempty for $\mathsf{HK}(0, 1/(aP_2))$.

Proposition

Assuming that $\mathbf{R}^0 < \mathbf{R}^1$ and $\mathbf{A}\mathbf{R}^0 < \mathbf{B}$, there exists a unique NBS \mathbf{R}^* for the bargaining problem $(\mathcal{F}, \mathbf{R}^0)$, and is characterized as follows:

$$R_i^* = \min\left\{R_i^1; R_i^0 + \frac{1}{\sum_{j=1}^3 \mu_j A_{ji}}\right\}, \quad i \in \{1, 2\}$$

where $\mu_j \ge 0, j \in \{1, 2, 3\}$ is chosen to satisfy

$$(\mathbf{A}\mathbf{R}^* - \mathbf{B})_j \mu_j = 0, \quad \mathbf{A}\mathbf{R}^* \leq \mathbf{B}$$

Strong Interference

a = 3, b = 5, $SNR_1 = 20dB$, $SNR_2 = 20dB$

Mixed Interference

a = 0.1, b = 3, SNR₁ = 20dB, SNR₂ = 20dB

Weak Interference

a = 0.2, b = 0.5, $SNR_1 = 20dB$, $SNR_2 = 20dB$

Rates versus Interference

NBS (\mathbf{R}^*) and disagreement point (\mathbf{R}^0), SNR₁ = SNR₂ = 20dB, a = 1.5.

Sum Rate versus Interference

 $SNR_1 = SNR_2 = 20dB, a = 1.5.$

Some Limitations of the NBS Approach

- Most information concerning the bargaining environment and procedure is abstracted away.
- Each user's cost of delay in bargaining is not taken into account.
- We also consider the strategic approach of dynamic alternating-offer bargaining games (AOBG).

- Model bargaining process as a noncooperative multi-stage game.
- \bullet Users alternate making offers in feasible set ${\cal F}$ until one is accepted.
- Cost of bargaining: An exogenous probability characterizing the risk of breakdown of bargaining due to some outside intervention.

- User 1 and user 2 alternate making offers.
- If user 2 rejects the offer made by user 1, there is a probability p_1 that the bargaining will end in the disagreement \mathbf{R}^0 .
- Similarly, define p₂.
- Bargaining continues until some offer is accepted or the game ends in disagreement.
- When an offer is accepted, the users get the rates specified in the accepted offer.

Proposition

For any regular two-user bargaining problem $(\mathcal{F}, \mathbf{R}^0)$, let $(\mathbf{\bar{R}}, \mathbf{\tilde{R}})$ be the unique pair of efficient agreements in \mathcal{F} which satisfy

$$\tilde{R}_1 = (1 - p_2)(\bar{R}_1 - R_1^0) + R_1^0$$

$$\bar{R}_2 = (1 - p_1)(\tilde{R}_2 - R_2^0) + R_2^0$$

In the equilibrium, user 1 always proposes $\overline{\mathbf{R}}$ and accepts \mathbf{R} with $R_1 \geq \tilde{R}_1$; user 2 always proposes $\widetilde{\mathbf{R}}$ and accepts \mathbf{R} with $R_2 \geq \bar{R}_2$. Therefore, in equilibrium, the game will end in an agreement on $\overline{\mathbf{R}}$ at round 1.

Illustration of AOBG

a = 0.2, b = 1.2, SNR₁ = 10dB and SNR₂ = 20dB

Rate versus p_1 in AOBG

 $p_2 = 0.5$, a = 0.2, b = 1.2, SNR₁ = 10dB and SNR₂ = 20dB

Conclusion

- Coordination and bargaining can improve selfish users' rate substantially compared with the uncoordinated case.
- NBS based on a simple H-K scheme not only provides a fair operating point but also maintains a good overall performance.
- AOBG models the bargaining process.
- Cost of bargaining: Risk of bargaining breakdown.
- Ongoing and future work:
 - Bargaining for degrees of freedom.
 - Other costs of bargaining: Reduction in utility.