

Communicating On and Around the Human Body

Results and Challenges in Body Area Networks

Claude Oestges www.uclouvain.be/claude.oestges

ICTEAM Electrical Engineering Université catholique de Louvain, Belgium

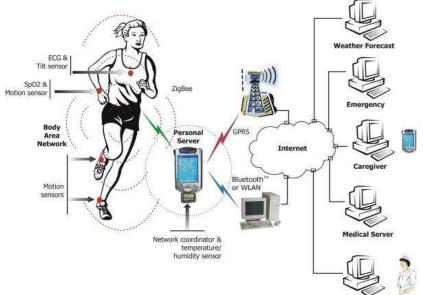
Acknowledgments

Collegues from UCLouvain and ULBrussels

- 🗆 Vaibhav Bathnagar
- Christophe Craeye
- Philippe De Doncker
- Farshad Keshmiri
- 🗆 Lingfeng Liu
- 🗆 Stéphane van Roy
- Luc Vandendorpe

COST 2100 Action - <u>www.cost2100.org</u>

Working Group E on Body Communications


Body Area Networks ?

One definition (... among many others)

Set of mobile and compact intercommunicating sensors either wearable or implanted into the human body, which monitor (vital) body parameters and movements

Many applications

- Medical devices/sensors
- Remote health monitoring
- Entertainment
- Body to body communications

Université catholique de Louvain

Outline

- Review of BAN requirements and challenges
- Overview of existing or future standards
- Recent results on channel modeling
- Communication theory challenges for BANs
- Conclusions and discussion

BAN General Requirements

Interoperability

- Seamless data transfer across standards
- Low complexity and small devices
- System and device-level security
 - Secure and accurate transmission
 - Integrity (make sure that the patient's data is only derived from the dedicated BAN system)
- Privacy
- Data consistency
 - Cross-check across data sources

BAN Technological Requirements

Requirements depend on the application [Gorce 2009]

	Body monitoring	Medical warning	Multimedia flows
Max numb of sensors	16	10	4
Max data rate per node	2kbps	10bps	6 Mbps
Peak Data rate ¹		200kbps -1Mbps	20 Mbps
Duty cycle	up to 100%	0,01%	100%
Tolerated Latency	5ms with feedback ² 125ms without	2 s	20 ms
PER max	0.1%		10e-2
Multi-hop relays	If required	No	No
Mobility	Running, human motion	Everyday life movements	
Network topologies	Star, Mesh	Star	P2P, star

Université catholique de Louvain

Challenges

Is a Body Area WSN different from any other WSN ?

The main challenge is the wireless channel

- Path loss is very (very ?) large
- Propagation takes place via two mechanisms
 - On-body wave is quasi-deterministic
 - Off-body wave is related to the environment

A few additional challenges

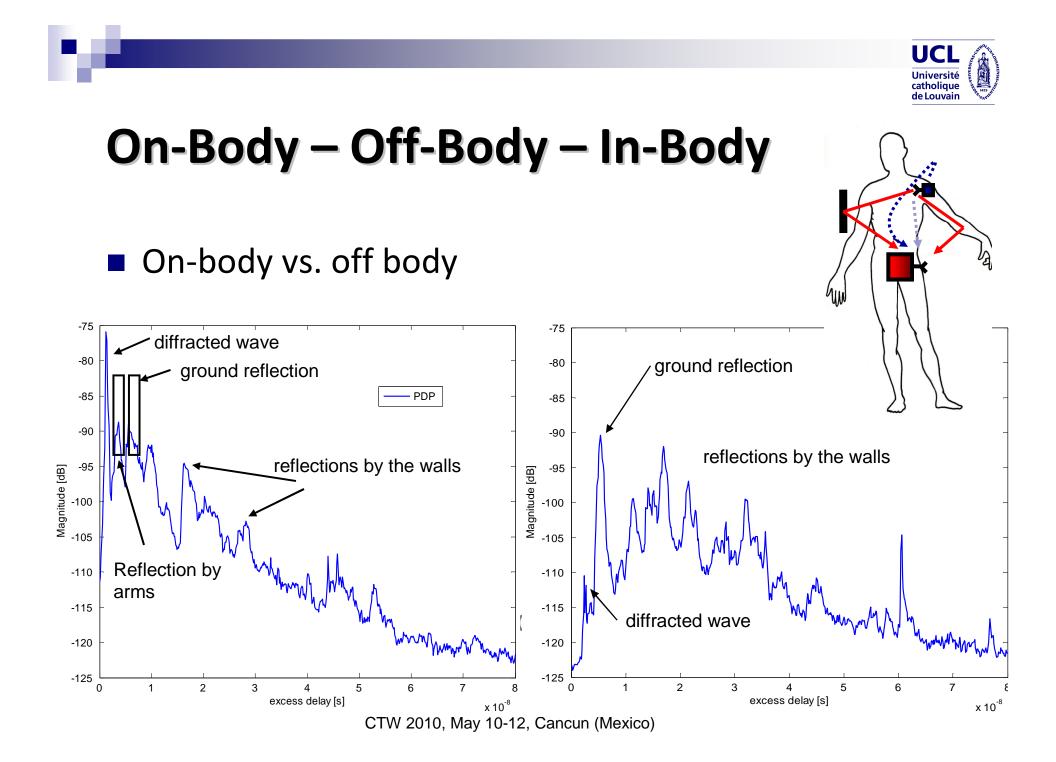
- □ High data rates for some applications (yet, low power, etc.)
- Security and privacy issues

Standards for BAN

IEEE 802.15 family

- 🗆 Bluetooth LE
 - Intermediate data rates, 40 channels
- □ 802.15.3
 - Narrowband, high data rate, but only 4 channels @ 2.45 GHz
- 802.15.4 (ZigBee)
 - Narrowband, low data rate and 16 channels
- 🗆 802.15.4a (UWB)
 - Direct Sequence UWB, low rate (but can be increased)
- □ 802.15.6
 - Dedicated to BAN, but still not defined (TG6)
 - Both narrowband and UWB modes ?

Standard Channel Model

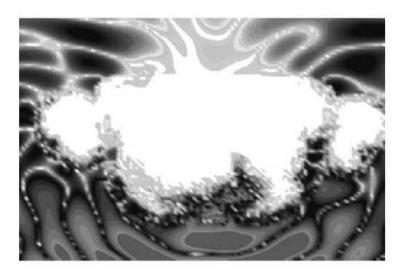

IEEE 802.15 TG6 channel model [IEEE 802.15 2009]

- Generic channel model (including path-loss, fading and delay dispersion) for different canonical scenarios
- Some remarks
 - Model is independent of antenna type !
 - Channel dynamics not well captured

Recent Results on Channel Modeling

- On-body vs. off body
- On-body path loss
- Fading and shadowing
- Channel correlation for on-body cooperative networks
- Multipath in UWB systems

On-Body – Off-Body – In-Body


On-body vs. off body

In-body ?

 \Box ~ 3 dB/cm at 400 MHz

- \Box ~ 4 dB/cm at 900 MHz
- $\Box \sim 6 \text{ dB/cm}$ at 2450 MHz

[Ryckaert, 2004]

On-Body – Off-Body – In-Body

- In-body transmission can be neglected when dealing with external antennas
- On-body vs. off body (integrated from 3 to 10 GHz)

	Diffracted wave [dB]	Reflections [dB]	Total [dB]	Ratio body/total [%]
F2F	-72.96	-70.28	-68.40	35.18
F2B	-100.70	-78.46	-78.43	0.60

- Transmission from front to back hardly possible without scattering obstacles
- Need of relaying strategy ?

On-Body Path Loss

- Two current types of models
 - □ Generic models, derived from measurements and/or electromagnetic simulations [Fort 2007; Fort 2010]
 - Along the body (same side)

$$L(dB) = 10m \log_{10}(r/r_0)$$

 \square m = 3 to 3.5 in the 900-2500 MHz frequency range

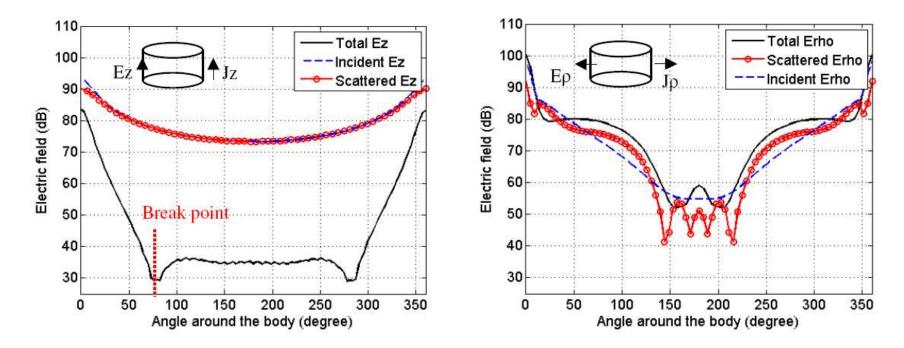
Around the body

 $L(dB) = \alpha(r - r_0)$

 Saturation in the back (for front Tx) caused by interference between right and left waves

 $\Box \alpha$ = 2 dB/cm at 2.45 GHz \Rightarrow ~ 40-50 dB from front to back

Above models are for dipole antennas parallel to the body


```
CTW 2010, May 10-12, Cancun (Mexico)
```

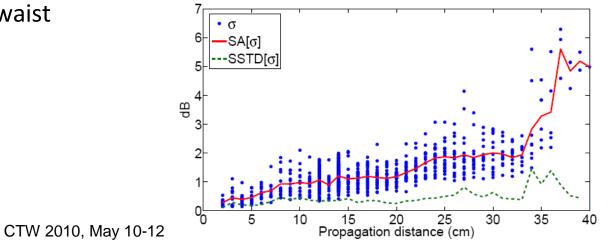

On-Body Path Loss

Two current types of models

Generic models, derived from measurements and/or electromagnetic (EM) simulations [Keshmiri 2010]

On-Body Path Loss

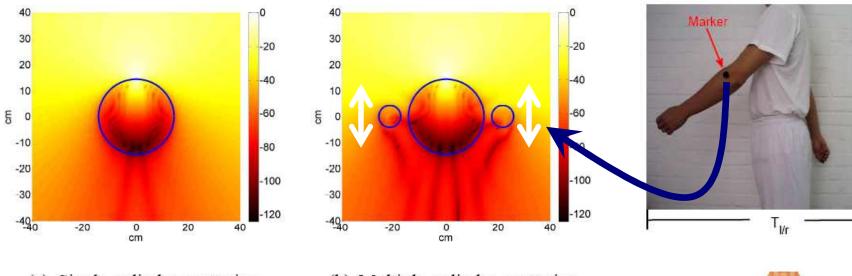
Two current types of models

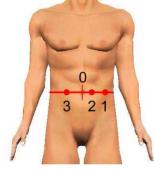

- □ Generic models, derived from measurements and/or electromagnetic (EM) simulations [Keshmiri 2010]
 - For antennas perpendicular to the body, path loss can be significantly reduced (via both the slope and the saturation)
- Scenario-specific models, eg at 2.45 GHz [D'Errico 2009]
 - Hip-to-wrist ~ 58 to 62 dB (indoor), ~ 62 to 65 dB (anechoic)
 - Hip-to-foot ~ 58 to 60 dB (indoor), ~ 67 to 71 dB (anechoic)
 - Left ear to right ear ~ 60 (indoor) to ~ 63 dB (anechoic)

 In all cases, path loss also depends on the human body type (shape, dimensions)

Université catholique de Louvain

Shadowing

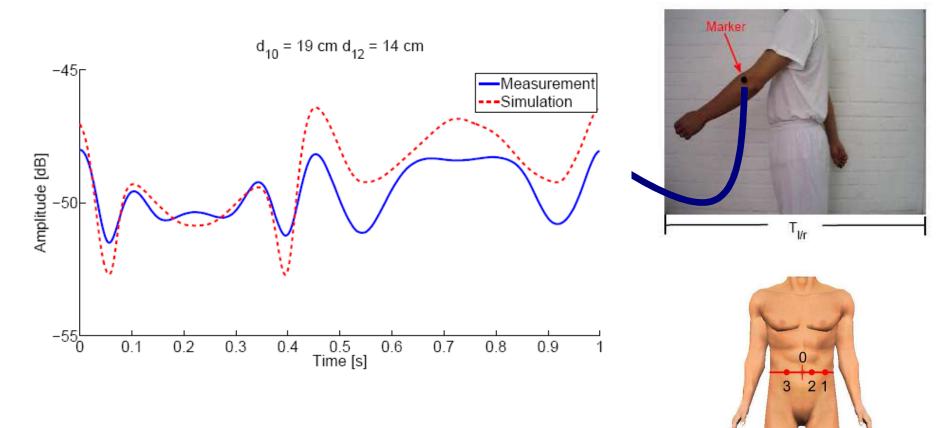

- Shadowing (or slow fading) is the dominant timevarying effect
 - It is mostly related to the body motion (swinging arms, walking), and is larger in anechoic condition
 - □ Well represented by a lognormal variable with given standard deviation [D'Errico 2009, Liu 2009]
 - Hip-to-wrist: std of 0.5 (still, indoor) to 4 dB (running, anechoic)
 - Around the waist



Shadowing

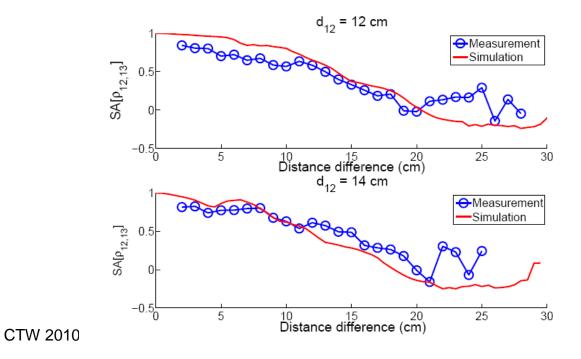
Electromagnetic model of dynamic shadowing [Liu 2009]

- (a) Single cylinder scattering
- (b) Multiple cylinder scattering

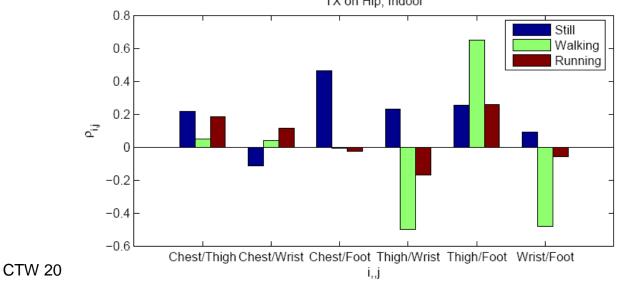


CTW 2010, May 10-12, Cancun (Mexico)

Shadowing


Electromagnetic model of dynamic shadowing [Liu 2009]

Shadowing Correlation


- Shadowing correlation is an important parameter in cooperative schemes
- Shadowing correlation model based on EM model (around the body) [Liu 2009, Liu 2010]

Shadowing Correlation

- Shadowing correlation is an important parameter in cooperative schemes
- Shadowing correlation model based on EM model (around the body) [Liu 2009, Liu 2010]
- Empirical model based on specific scenarios [D'Errico 2009]
 TX on Hip, Indoor

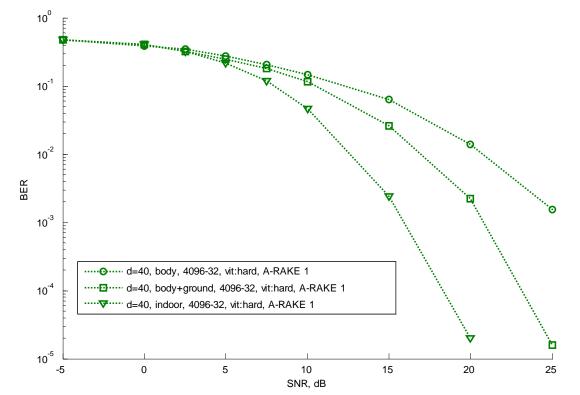
Fading and Multipaths

- Fast-fading is mostly Ricean distributed [Fort 2007]
 Coherent part is the body diffracted wave
 Scattered part is mostly caused by the environment
 - □ As a consequence, the larger the path loss, the lower the K-factor

Which techniques ?

🗆 UWB

□ MIMO + UWB


Cooperation

Distributed MIMO

UWB

- □ UWB is implemented in 802.15.4a (and in TG6 ?)
- Impact of channel condition on 802.15.4a performance

MIMO

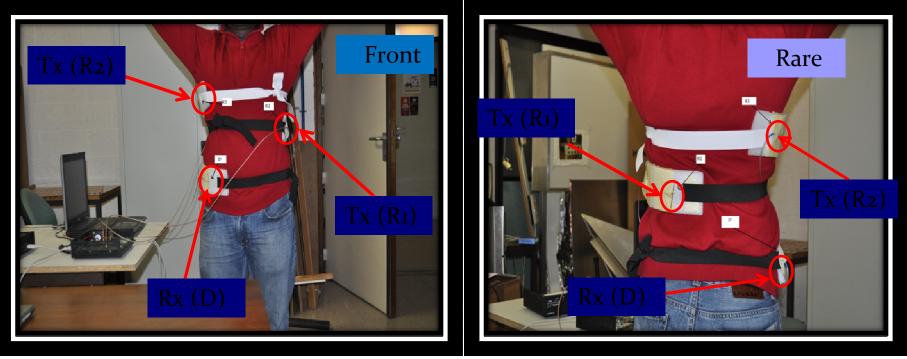
- MIMO BANs have been analyzed in several papers, e.g. [Neyrynck 2007]
 - On-body wave causes the signals to be highly correlated
 - Off-body contribution provides decorrelation, but is unreliable
- □ Use of polarization diversity appears attractive
 - Reduced correlation of the on-body wave
 - Beware of cross-polar loss when estimating the spectral efficiency gain !

MIMO UWB

 \Box Why MIMO and UWB ?

- Some claim that UWB means no fading, making MIMO useless
- Actually, MIMO + UWB still offer improvement [Molisch 2010], in particular in terms of SNR
 - □ This is a welcome effect, especially in BAN owing to the high path loss

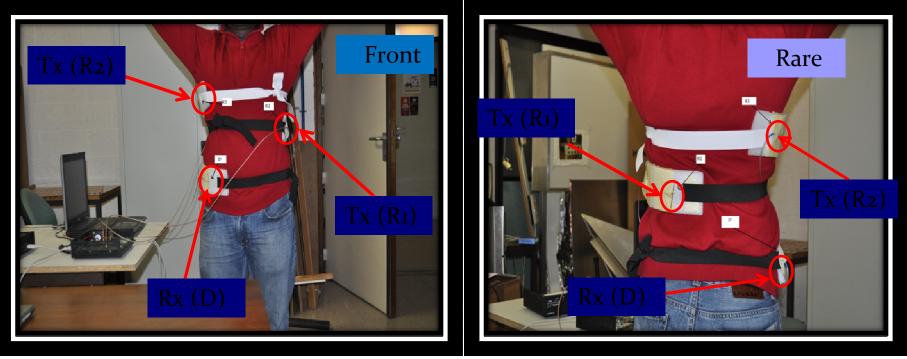
Challenges


- Channel modeling: 802.15.4a is essentially a SISO model
 - \Rightarrow Model was extended to MIMO scenarios in [van Roy 2010]
- UWB is usually intended for simple Rx structures, while MIMO often means high complexity !

 \Rightarrow Need of a compromise

Cooperative/relay schemes

 USRP board used a test bed for implementing cooperative MIMO on body (UCL-led WALIBI project in Belgium)

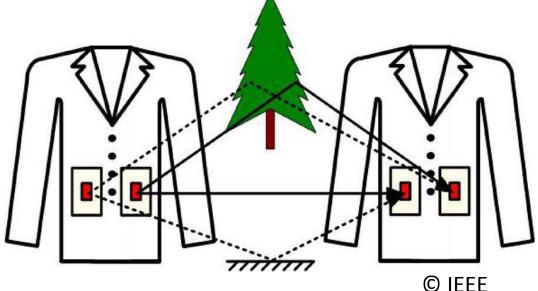


CTW 2010, May 10-12, Cancun (Mexico)

Cooperative/relay schemes

 USRP board used a test bed for implementing cooperative MIMO on body (UCL-led WALIBI project in Belgium)

CTW 2010, May 10-12, Cancun (Mexico)



Cooperative/relay schemes

- USRP board used a test bed for implementing cooperative MIMO on body (UCL-led WALIBI project in Belgium)
- Observed diversity order matches theory
- □ Challenges
 - MIMO is complex and energy-consuming, yet wireless body sensor networks must be low-power and secure
 - Power has to be dedicated to cryptography
 - □ Use of channel-based cryptography ?

- Distributed MIMO [Ouyang, Love et al. 2009]
 - Measurement of distributed MIMO schemes using wearable antennas
 - ⇒ ~ 300 % increase of spectral efficiency in indoor scenarios using patch antennas

CTW 2010, May 10-12, Cancun (Mexico)

Université catholique de Louvain

Conclusions

- Body area communications are in many ways different from classical wireless networks
 - Most existing solutions are still based on classical standards
 - Need for a true cross-layer approach (from antenna design and channel modeling to PHY and MAC layers)
- On-going and future research
 - In-body and in-to-out-body communications (implants)
 - □ Nano-networks [Akyildiz 2010]
 - How different are nano-networks from classical networks ?
 - Interaction with biological mechanisms

Selected References

Antennas and Propagation for BANs

- [IEEE 802.15 2009] Channel model for body area network (BAN), IEEE P802.15-08-0780-09-0006, 2009
- □ [Fort 2007] A. Fort, et al., Indoor body area channel model for narrowband communications, IET Proc. Microwaves, Ant. Propagat., 1(6), 2007
- □ [Fort 2010] A. Fort, et al., A body area propagation model derived from fundamental principles, IEEE Trans. Ant. Propagat., 58(2), 2010
- [D'Errico 2009] R. D'Errico, L. Ouvry, Time-variant BAN channel characterization, Proc. PIMRC 2009
- □ [Liu 2009] L. Liu, et al., Fading correlation measurement and modeling on the front side of a human body, Proc. EuCAP 2009
- [Liu 2010] L. Liu, et al., Time-variant on-body channel fading characterization and modeling at 2.45 GHz in wireless body area networks, IEEE Trans. Ant. Propagat., submitted, 2010
- [Keshmiri 2010] F. Keshmiri, et al., Wave propagation from sources with arbitrary polarization next to the human body, Proc. IEEE APS 2010
- [van Roy 2010] S. van Roy, C. Oestges, et al., A comprehensive channel model for UWB multisesor multiantenna body area networks, IEEE Trans. Ant. Propagat., 58(1), 2010

Selected References

Communications for BANs

- Gorce 2009] J.-M. Gorce, Cooperation mechanisms in BANs, COST 2100 Technical Document TD(09)862, 2009
- [Ouyang Love et al. 2009] Y. Ouyang, D. Love et al., Body-worn distributed MIMO system, IEEE Trans. Veh. Techn., 58(4), 2009
- □ [Neyrynck 2007] D. Neyrinck, et al., Exploiting MIMO in the personal sphere, IET Proc. Microwaves, Ant. Propagat., 1(6), 2007
- [Molisch 2010] A. Molisch, UWB MIMO channel propagation modelling, Proc. EuCAP 2010
- [Akyildiz 2010] I. Akyildiz, et al. Propagation models for nano-communication networks, Proc. EuCAP 2010