Beyond LTE: *Hundreds* of Base Station Antennas!

Thomas L. Marzetta & Alexei Ashikhmin

Bell Laboratories

Alcatel-Lucent

May 10, 2010

Large Excess of Base Station Antennas Over Terminals Yields Energy Efficiency + Reliably High Throughput

- M~400 base station antennas serve K~40 terminals via multi-user MIMO
- Doubling M doubles the power that the terminals receive (given perfect CSI)
 - allows transmitted power to be reduced correspondingly
 - requires base station to know forward channel
- Extra base station antennas always help (even with noisy CSI)
 - Eventually produce inter-cellular interference-limited operation: everybody can now reduce power!
 - eliminate effects of uncorrelated noise and fast fading
 - compensate for poor-quality channel-state information

Single Isolated Cell

[Marzetta, "How much training is required for multiuser MIMO?", Asilomar, 2006]

Isolated Cell: M Antennas, K Terminals

$$\frac{K\times 1}{\overline{x}} = \sqrt{\rho_f} \underbrace{H}_{K\times M} \underbrace{\overline{s}}^{M\times 1} + \overline{w}$$

Perfect CSI

$$\overline{s} = \frac{1}{\sqrt{MK}} H^* \overline{q} \implies \overline{x} = \sqrt{\frac{\rho_{\rm f}}{MK}} H H^* \overline{q} + \overline{w}$$

$$x_k = \sqrt{\frac{\rho_f}{MK}} \overline{h}_k \overline{h}_k^* q_k + \left(w_k + \sqrt{\frac{\rho_f}{MK}} \sum_{\ell \neq k} \overline{h}_k \overline{h}_\ell^* q_\ell \right)$$

Assume that $\frac{\overline{h}_k \overline{h}_\ell^*}{M} \xrightarrow{M \to \infty} \delta_{k\ell}$: intra - cell interference vanishes!

iid Rayleigh
$$\rightarrow$$
 SINR $\approx \frac{\left(\frac{M\rho_{\rm f}}{K}\right)}{1 + \frac{\rho_{\rm f}(K-1)}{K}}$

Isolated Cell: M Antennas, K Terminals

CSI estimated from reverse-link pilots

$$\hat{H} = H + \frac{1}{\sqrt{\rho_{\rm r}}} V, \quad \bar{s} = \frac{1}{\sqrt{MK(1+1/\rho_{\rm r})}} \hat{H}^* \bar{q}$$

$$\bar{x} = \sqrt{\frac{\rho_{\rm f} \rho_{\rm r}}{MK(1+\rho_{\rm r})}} H \left(H^* + \frac{1}{\sqrt{\rho_{\rm r}}} V^* \right) \bar{q} + \bar{w}$$

$$x_k = \sqrt{\frac{\rho_{\rm f} \rho_{\rm r}}{MK(1+\rho_{\rm r})}} \bar{h}_k \bar{h}_k^* q_k$$

$$+ \left[w_k + \sqrt{\frac{\rho_{\rm f}}{MK(1+\rho_{\rm r})}} \left(\sum_{\ell \neq k} \bar{h}_k \bar{h}_\ell^* q_\ell + \sum_{\ell=1}^K \bar{h}_k \bar{v}_\ell^* q_\ell \right) \right]$$

$$\text{iid Rayleigh} \rightarrow \text{SINR} \approx \frac{\left(\frac{M\rho_{\rm f} \rho_{\rm r}}{K} \right)}{1+\rho_{\rm f} + \rho_{\rm r} + \frac{\rho_{\rm f} \rho_{\rm r} (K-1)}{(1+\rho_{\rm r})K}}$$

Single Isolated Cell: What Have We Learned?

- Under all reasonable propagation conditions, increasing the number of base station antennas permits a reduction in base station power
- Assign each terminal an orthogonal pilot sequence: no need to overtrain
- Multiplexing gains are assured provided the cross-correlations between different channel vectors grow at a lesser rate than M:

$$\frac{\overline{h}_k\overline{h}_\ell^*}{M} \xrightarrow{M \to \infty} \delta_{k\ell}$$

Multiple Cells: No Cooperation

[Marzetta, "The ultimate performance of noncooperative cellular multiuser MIMO", submitted to IEEE Trans. Wireless Communications, July, 2009]

Multiple Cells: No Cooperation

- If we could assign an orthogonal pilot sequence to every terminal in every cell then nothing bad would happen!
 - Ever greater numbers of base station antennas would eventually defeat all noise, and eliminate both intra- and inter-cell interference
- But there aren't enough orthogonal pilot sequences for everyone!
 - Pilot sequences have to be re-used
- Pilot contamination: the base station inadvertently learns the channel to mobiles in other cells
 - Forward link: base station transmits interference to mobiles in other cells
 - Reverse link: base station processing enhances his reception of transmission from mobiles in other cells
- Inter-cell interference due to pilot contamination persists, even with an infinite number of antennas!
 - This is the only remaining impairment

Limiting Case: Infinite Number of Antennas

- Greatly simplifies multi-cellular analysis: all effects accounted for near-analytically
 - Acquisition of CSI
 - Imperfections in CSI
 - Inter-cellular interference
 - Propagation
 - Fast (either line-of-sight, or independent Rayleigh, or something intermediate)
 - Slow (geometric, log-normal shadow)
- Far-reaching and comprehensive conclusions ensue
- Indicates a new direction in which the macro-cellular world can go: vastly improved energy efficiency and throughput compared with LTE

Summary of Limit Analysis

- Multi-cellular TDD scenario, 42 terminals served per cell
 - 500 μsec coherence interval (7 OFDM symbols): 3 reverse-link pilots, 1 idle,
 3 data
 - OFDM: 20 MHz bandwidth, cyclic prefix 4.76 μsec
 - Fading: Fast + log-normal shadow (8 dB) + geometric (3.8 power)
 - No inter-cellular cooperation
- Net downlink throughput (comparable uplink) for frequency re-use 7
 - mean
- -730 Mbits/sec/cell
- 17 Mbits/sec/terminal
- 95% likely: 3.6 Mbits/sec/terminal
- spectral efficiency constant with respect to bandwidth
- throughput constant with respect to cell-size
- number of terminals per cell proportional to coherence interval
- performance independent of power

Cells Operate Independently, Each Serving Single-Antenna Terminals via Multi-User MIMO: TDD Only!

- Maximum number of terminals limited by the time that it takes to send reverse pilots: pilot-interval divided by the channel delayspread
- Coherence interval: 500 μsec (7 LTE OFDM symbols) TGV speeds!
 - 3 symbols for reverse-link pilots
 - 3 symbols for data
 - 1 symbol for computations and dead time
- 42 terminals per cell served simultaneously

Propagation: Fast + log-normal shadow (8 dB) + geometric (3.8 power)

Nobody has prior CSI!

Independent Rayleigh fading isn't necessary.

Pilot Contamination: Re-Use of Pilots in Other Cells Causes Base Station Inadvertently to Learn the Channel to Mobiles in Other Cells

- Pilot contamination causes inter-cellular interference on both the forward and the reverse links
- Interference persists, even for an infinite number of antennas!

Reverse-Link Pilots: Pilot Contamination

L cells share the same set of K orthogonal pilot sequences

The j-th base station's estimate for the channel to his k-th terminal is contaminated by the channel from the terminals in L-1 other cells who share the same pilot sequence; after de-spreading:

$$\hat{g}_{nmjkj} = g_{nmjkj} + \sum_{\ell \neq j} g_{nmjk\ell} + \frac{1}{\sqrt{\rho_{p}}} v_{nmj}$$

$$\hat{G}_{jj} = G_{jj} + \sum_{\ell \neq j} G_{j\ell} + \frac{1}{\sqrt{\rho_{p}}} V_{j} \quad (M \times K)$$

Forward-Link Data

The j-th base station uses the complex-conjugate of his channel estimate as a linear pre-coder:

$$\overline{s}_j = \hat{G}_{jj}^* \overline{a}_j$$

The terminals in the I-th cell receive transmissions from all base stations; products of identical propagation vectors grow as M, while all other products grow at a lesser rate (conclusion holds under more general conditions than independent Rayleigh fading):

$$\begin{split} & \overline{x}_{\ell} = \sqrt{\rho_f} \sum_{j} G_{j\ell}^T \left(\sum_{n} \sqrt{\rho_p} G_{jn}^* + V_j^* \right) \overline{a}_j + \overline{w}_{\ell} \\ & G_{j\ell} = H_{j\ell} D_{\overline{\beta}_{j\ell}}^{1/2} \\ & \xrightarrow{\overline{x}_{\ell}} \xrightarrow{M \to \infty} D_{\overline{\beta}_{\ell\ell}} \overline{a}_{\ell} + \sum_{j \neq \ell} D_{\overline{\beta}_{j\ell}} \overline{a}_j, \qquad \mathrm{SIR}_{fk} = \frac{\beta_{\ell k\ell}^2}{\sum\limits_{j \neq \ell} \beta_{jk\ell}^2} \end{split}$$

Forward-Link Data: Only Remaining Impairment is Interference Due to Pilot Contamination

Assume Gaussian signals; SIR and capacity are random via slow fading (geometric and log-normal shadow)

$$SIR_{fk} = \frac{\beta_{\ell k\ell}^2}{\sum\limits_{j \neq \ell} \beta_{jk\ell}^2}$$

$$C_{fk}$$
 (bits/s) = $\left(\frac{\text{bandwidth}}{\text{re-use factor}}\right)\left(\frac{T_{\text{data}}}{T_{\text{slot}}}\right)\left(\frac{T_{\text{usable}}}{T_{\text{symbol}}}\right) \cdot \log_2(1 + \text{SIR}_{fk})$

Forward SIR: Cumulative Distribution For Re-Use Factors 1, 3, 7

Forward Capacity Per Terminal: Cumulative Distribution For 20 MHz Bandwidth

Infinitely Many Antennas: Forward-Link Capacity For 20 MHz Bandwidth, 42 Terminals per Cell, 500 µsec Slot

Interference-limited: energy-per-bit can be made arbitrarily small!

Frequency Reuse	.95-Likely SIR (dB)	.95-Likely Capacity per Terminal (Mbits/s)	Mean Capacity per Terminal (Mbits/s)	Mean Capacity per Cell (Mbits/s)
1	-29	.016	44	1800
3	-5.8	.89	28	1200
7	8.9	3.6	17	730

		Mean Capacity per Cell (Mbits/s)
LTE Advanced (>= Release 10)		74

Conclusions in the Limit of an Infinite Number of Antennas

- Mathematically Exact
 - Required transmit energy per bit is arbitrarily small!
 - Total throughput per cell is independent of cell-size
 - Number of terminals served is independent of cell-size
 - Spectral efficiency independent of bandwidth
 - Effects of uncorrelated noise and fast fading disappear
 - The only remaining impediment is inter-cellular interference due to pilot contamination
- Approximate
 - Number of mobiles per cell is one-half of the ratio of the coherence time to the delay-spread
 - Throughput per terminal independent of coherence time
 - Aggregate throughput per cell proportional to coherence time
 - Reverse- and forward-link throughputs nearly identical

Isolated Cell: M Antennas, K=1 Terminal

$$x = \sqrt{\rho_{\rm f}} \underbrace{\overline{h}}_{1 \times M} \stackrel{M \times 1}{\overline{s}} + w$$

Perfect CSI

$$\overline{s} = \frac{1}{\sqrt{M}} \overline{h}^* q \implies x = \sqrt{\frac{\rho_f}{M}} \overline{h} \overline{h}^* q + w \approx \sqrt{\rho_f M} q + w$$

SNR
$$\approx M\rho_{\rm f}$$

CSI estimated from reverse-link pilot

$$\hat{h} = \bar{h} + \frac{1}{\sqrt{\rho_{\rm r}}} \bar{v}, \quad \bar{s} = \frac{1}{\sqrt{M(1+1/\rho_{\rm r})}} \hat{h}^* q$$

$$x = \sqrt{\frac{\rho_{\rm f} \rho_{\rm r}}{M(1+\rho_{\rm r})}} \bar{h} \left(\bar{h}^* + \frac{1}{\sqrt{\rho_{\rm r}}} \bar{v}^* \right) q + w$$

$$SNR \approx \frac{M\rho_{\rm f} \rho_{\rm r}}{1+\rho_{\rm f} + \rho_{\rm r}}$$