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Outline of this talk

• A general framework for scheduling and resource allocation.

• Incorporating state information uncertainty: ergodic rates versus outage
rates and HARQ. What should we care about?

• Examples: random ICI and channel prediction errors.

• Dimensionality bottleneck of cooperative MU-MIMO (block-fading model):
Shall I coordinate multiple base-stations?
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The scheduling and resource allocation problem

• Time is slotted.

• The system is characterized by a time-varying state S(t).

• A given PHY layer (including signaling strategy and feasibility constraints) is
characterized by the set of instantaneous rate functions:

Rk(s, γ(s)), γ ∈ Γ(P )

• Under suitable ergodicity and stationarity assumptions, the long-term
average throughput region is given by

R = coh
⋃

γ∈Γ(P )

{
R ∈ RK

+ : Rk ≤ E[Rk(S, γ(S))]
}
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• For a desired Network Utility Function g(·), we wish to operate at the point
solution of:

maximize g(R), subject to R ∈ R

• R is convex and, for any meaningful setting, bounded.

• Typically, we choose g(·) to be concave and componentwise non-decreasing.

• Therefore, the above problem is convex .... but it is not easy to solve since R
is usually difficult to describe (e.g., given in terms of an uncountable number
of linear constraints).

• In addition, we would like to have a dynamic policy that learns adaptively the
system statistics, rather than a collection of static policies for each possible
system statistics.
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Network utility examples

• Example. Proportional Fair Scheduling:

g(R) =
K∑
k=1

logRk

• Example. Max-Min Fair Scheduling:

g(R) = min
k∈{1,...,K}

Rk

• Example. Differentiated Rate Scheduling:

g(R) =
K∑
k=1

ωkRk
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A general result (Georgiadis, Neely and Tassioulas, 2004)

• At every t, pick the instantaneous rates Rk(t) = Rk(S(t), γ?(S(t))) such that
γ? is the solution to:

maximize
K∑
k=1

Qk(t)Rk(S(t), γ(S(t)), subject to γ ∈ Γ(P )

where Q(t) are scheduler weights.

• Let the arrival processes be given by A(t) = a?, solution of

maximize V g(a)−
K∑
k=1

Qk(t)ak, subject to 0 ≤ ak ≤ A

• Update the weights according to the “virtual queue” evolution equation:

Qk(t+ 1) = [Qk(t)−Rk(t)]+ +Ak(t)
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• Let

R(V,A) = lim
t→∞

1
t

t−1∑
τ=0

R(τ)

denote the long-term average rate K-tuple achieved by the above dynamic
policy with parameters V and A.

• It is possible to choose V and A such that

g(R(V,A)) ≥ g(R
?
)−O(1/V )

with average virtual buffer length (a measure of the convergence delay)

lim
t→∞

1
t

t−1∑
τ=0

E[Q(τ)] = O(V )
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Imperfect channel state information

• In the above policy, the instantaneous weighted sum-rate maximization
requires perfect knowledge of S(t).

• This is usually not the case!

• Let S(t) and Ŝ(t) denote the true channel state and the CSIT.

• The PHY instantaneous rate functions are Rk(s, γ(ŝ)) (generally different
from before!).

• The system long-term average throughput region becomes

R = coh
⋃

γ∈Γ(P )

{
R ∈ RK

+ : Rk ≤ E[Rk(S, γ(Ŝ))]
}
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Using retransmissions

• In the presence of uncertainty, the scheduled instantaneous rates R(t) may
not be achievable and an information outage occurs with some probability.

• In this case, some form of ARQ is implemented: how should this be done?

• Classical (Hybrid) ARQ:

1. Rate Rk(t) is scheduled and a codeword is produced;
2. An error occurs and NACK is sent back;
3. The same codeword, or additional parity symbols for the same codeword

are sent (Chase combining .... and various classical techniques).

• The problem with classical (H)ARQ at the PHY layer is that it does not work
well with scheduling!
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ARQ at the Logical Link Control (LLC) layer

1. Rate Rk(t) is scheduled and a codeword is produced;

2. An error occurs and NACK is sent back;

3. The corresponding information bits are left in the transmission buffer and will
be transmitted (possibly at different rate) later on.

• In this case, the system rate functions are the outage rates

Rk(s, γ(ŝ)) = rk × 1 {rk < Ik(s, γ(ŝ))}

for some suitable rate threshold Ik(s, γ(ŝ)) related to achievability.

• The scheduled rate rk is part of the policy γ.
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• We can show that the optimal dynamic scheduling policy in this case solves
the problem:

maximize
K∑
k=1

Qk(t)E
[
Rk(S(t), γ(Ŝ(t))

∣∣∣ Ŝ(t)
]
, subject to γ ∈ Γ(P )

• It follows that the scheduled rate is given by

r?k = arg max rk ×
[
1− P

(
Ik(S(t), γ(Ŝ(t))) ≤ rk

∣∣∣ Ŝ(t)
)]

12



Incremental redundancy ARQ at the PHY layer

1. When ACK is received for user k, a new packet of Bk bits (notice:
independent of t) is encoded using a rateless code;

2. each time t user k is scheduled, if the last feedback was NACK, then the next
block of parity symbols from the current packet is transmitted. Otherwise, if
the last feedback was ACK, the first block of the newly encoded packet is
transmitted.

• We can show that, for Bk sufficiently large, a scheduling policy that
updates the virtual buffers Q(t) using the virtual service rates Rk(t) =
Ik(S(t), γ(Ŝ(t))) operates as close as desired to a virtual system with long-
term average throughput region

R = coh
⋃

γ∈Γ(P )

{
R ∈ RK

+ : Rk ≤ E[Ik(S, γ(Ŝ))]
}
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• The optimal dynamic scheduling policy in this case solves the problem:

maximize
K∑
k=1

Qk(t)E
[
Ik(S(t), γ(Ŝ(t))

∣∣∣ Ŝ(t)
]
, subject to γ ∈ Γ(P )

• Notice that with this scheme there is no explicit rate allocation.

• As a matter of fact, for each user, we can choose the parameter Bk in order
to hit a desired throughput/delay tradeoff.

• The parameters Bk can be chosen independently for each user, without
affecting the operations of the scheduler.
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ARQ and mutual information accumulation

k,c

rk,c

Accumulated mutual information

ACK ACK ACK
W (1) W (2) W (3)k,c k,c
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Approaching the virtual genie-aided throughput region

Optimal Network Utility point (virtual system)

Actual throughput point
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Application to multicell MU-MIMO downlink

• We assume that each cell has perfect CSIT/CSIR for its own users, and
knows the pdf of the interference from the other cells to each of its user
locations.

• The channel state S(t) and the CSIT for the reference cell c are:

Sc(t) = (Hc(t), χ1,c(t), . . . , χK,c(t)), Ŝc(t) = Hc(t).

• The instantaneous WRSM problem that the scheduler has to solve (assuming
LZFB downlink precoding) is:

max
∑

k∈Uc(t)

Qk,c(t)
∫ ∞

0

log

(
1 +
|hH
k,c(t)vk,c(t)|2pk,c(t)

1 + z

)
dFχk,c(z)
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Linear layout, 18 cells, M = 2 antennas, K = 36 users/cell
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Linear layout, 18 cells, M = 2 antennas, K = 36 users/cell
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Application to MU-MIMO with channel prediction

• The scheduler should compute:

max
∑
k∈U

Qk(t)E
[

log

(
1 +

|hH
k(t)vk(t)|2pk(t)

1 +
∑
j∈U :j 6=k |hH

k(t)vj(t)|2pj(t)

)∣∣∣∣∣ Ĥ
]

• This is generally very hard. Nevertheless, we observed a sort of threshold
behavior in the prediction MMSE.

• Users are partitioned in “predictable” and “non-predictable” according to their
prediction MMSE.

• Eventually, the scheduler chooses opportunistically if serving a single non-
predictable user with space-time coding or up to M predictable users with
multiuser precoding.
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Example with 8 users and 4 antennas
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Dimensionality bottleneck: cost of CSIT

• We have established before that long-term average throughput rates (or
ergodic rates) matter, if the system is well designed.

• Now, we can use bounds on ergodic rates in order to quantify the cost of
CSIT.

• A “quick fix” to ICI is to let base stations to cooperate (radio over fiber ...
distributed MIMO systems).

• Since we do not have a clear measure of the complexity of cooperation, let’s
restrict to the basics:

fixed maximum power per cell Pmax and channel W × T product

• However, CSIT does not come for free.
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FDD, closed-loop training and feedback
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Downlink training and CSIT feedback

• The BS must broadcast at least M symbols (common downlink pilot signal),
per channel coherence block of ≈WT dimensions.

• In order to perform scheduling, at least M users (generally more than M )
must feedback their CSIT.

• Cooperative MIMO bound: focusing only on downlink training, we know from
Marzetta-Hochwald and Zheng-Tse that the high-SNR capacity behaves like:

C(SNR) = M∗
(

1− M?

WT

)
log SNR + c+ o(1)

where M∗ = min{M,K,WT/2}.
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• In FDD, we loose a factor of 2, i.e., for a properly designed training and
feedback scheme the following sum-rate is achievable:

Rsum(SNR) = M∗
(

1− 2M?

WT

)
log SNR + c′ + o(1)

where M∗ = min{M,K,WT/4}.

• In a cellular system characterized by distance-dependent pathloss, we have
a phenomenon of diminishing return: as we coordinate more and more
basestations, the benefit in terms of ICI become negligible with respect to
the loss of degree of freedom due to training and feedback.
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Quantifying the cost of CSIT in MU-MIMO
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Multi-cell cooperation and inter-cluster interference

• We defined arbitrary cooperation clusters. ICI is treated as noise:

σ2
k = 1 +

∑
m/∈M`

α2
m,kPm

• After a convenient re-normalization, the reference cluster channel is given by

y = HHx + z
with y ∈ CNA, x ∈ CγNB, z ∼ CN (0, INA) and the channel matrix H ∈

CγNB×NA given by

H =

 β1,1H1,1 · · · β1,AH1,A
... ...

βB,1HB,1 · · · βB,AHB,A

 ,
where we define βm,k = αm,k

σk
.
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Network utility maximization and fairness

• It is fundamental to consider the system under some well-defined fairness
criterion.

• Otherwise, the sum-rate may be maximized by allocating zero rate and power
to users in critical conditions edge users.

• The network utility maximization framework said before applies here:

maximize g(R)

subject to R ∈ R

where R is the achievable ergodic rate region for the reference cluster.
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Large system limit

• In order to overcome the analytical difficulties, we consider the limit for N →
∞ and fixed γ,A,B.

• It turns out that the matrix Hµ has the “Girko-type” structure

Hµ = Hiid �P

where masking matrix P imposes a certain variance profile given by the
path-gains β2

m,k.

• We exploit some known results in order to arrive at a closed-form solution.
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Non-perfect CSIT

• For each such block, γpNB dimensions are dedicated to common downlink
training: each user in the cluster estimates its the corresponding column of
H, of length γNB coefficients (it must be γp ≥ γ).

• The ratio γp/γ > 1 denotes the “pilot dimensionality overhead”, relative to the
minimum number of pilots dimensions for MMSE estimation.

• After some rather standard algebra, given the jointly Gaussian model, we
arrive at

H = Ĥ + E,
where

Ĥ =

 β̂1,1H1,1 · · · β̂1,AH1,A
... ...

β̂B,1HB,1 · · · β̂B,AHB,A

 ,
and

E =

 β̄1,1E1,1 · · · β̄1,AE1,A
... ...

β̄B,1EB,1 · · · β̄B,AEB,A

 ,
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with
β̂m,k =

β2
m,k√

1/p+ β2
m,k

, β̄m,k =
βm,k√

1 + pβ2
m,k

where p = γp
γ PB, and where the blocks Hm,k, Em,k are independent with iid

∼ CN (0, 1) elements.

• A standard technique to lower bound the mutual information I(u(j)
k ; y(j)

k |Ĥ)
yields:

I(uk; yk|Ĥ) ≥ log

(
1 +

Λ̂k(µ)qk
1 +

∑B
m=1 β̄

2
m,kP

)
where we have removed the expectation since in the limit for N → ∞ the

term inside the expectation converges to a deterministic limit (computed from
the large-random matrix theory results).
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• SNR loss: due to non-perfect CSIT, intra-cluster multiuser interference
appears:

Λk(µ)→ Λ̂k(µ)

1 +
∑B
m=1 β̄

2
m,kP

• Dimensionality loss: the system spectral efficiency is scaled by a factor[
1− γpNB

WT

]
+

, taking into account the training overhead.

• In the large system limit, we let τ = N
WT to be the ratio between the number

of users per group and the dimensions in a time-frequency slot.

• We investigated the system spectral efficiency for fixed τ , in the limit of N →
∞.
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Results: non-perfect CSIT, 8-cell linear topology, τ = 1/128
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Results: non-perfect CSIT, 8-cell linear topology, τ = 1/64
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How shall I group my antennas?

• A related but different problem is the following: given that the CSIT overhead
depends on the number of jointly processed antennas, for a given overhead
what is the best antenna placement?

• We investigated three options:

1. Conventional cellular (BM antennas per basestation, no cooperation);
2. Expanded cellular (BM antennas per basestation, basestations active on

different subbands);
3. Overlapped clustering (M antennas per basestation, clusters of size B

basestation);
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Conventional cellular (reuse 1)
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Expanded cellular (reuse 1)
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Overlapping clusters (reuse 1)
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Results are analogous ....
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Conclusions

• Ergodic rates (as opposed of outage rates) are meaningful in data-oriented
communications.

• The gains of implementing incremental redundancy at the PHY layer jointly
with scheduling can be significant, especially for edge users and high-mobility
users.

• At least in FDD, the intrinsic cost of estimating CSIT must be taken into
account in order to reach any meaningful system design guideline.

• Grouping large number of antennas and avoinding base-station joint
processing appears the best strategy, when overhead and fairness are
properly taken into account.
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