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Multi-cell system model

O Think of entire deployment as a large broadcast channel

O optimal capacity region achievable w/ TX precoding and DPC

B Shannon limit can be computed theoretically: convex problem

B modulation constraint & processing losses make it less tractable

O performance achievable w/ linear multi-point equalizer (MPE)
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RX beams matched to the serving cell & SLR applies per stream

*

Page 2 QLIALCOM



Joint transmission & full coordination:

ISD =500m, 5 tiers, 46dBm/cell

ey T

ISD = 500

m

O

C/T and C/I [dB]

Cell spectral efficiency [bps/Hz]
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|Ideal fully coordinated multi-cell transmission takes most UEs to the peak rate

when there are enough degrees of freedom to ensure TX/RX interference nulling

O

O

w/ 4 TX and 2 RX: the total number of TX degrees of freedom exceeds the total

number of MIMO streams across UEs by 2

w/ 2 TX and 2 RX: the number of degrees of freedom
and total MIMO streams are balanced

Scenario 2x2 2x4

Rank 1 Rank 2 Rank 1 Rank 2
w/o MPE 7% 23% 42% 58%
w/ MPE 01% 99% 00% 100%
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Joint transmission, full coordination: 2x4, ISD 500m

2x4, ISD = 500m, 5 tiers, SU-MIMO, 1 UE/cell, MPE TX order = full 2x4, ISD = 500m, 5 tiers, SU-MIMO, 1 UE/cell, MPE TX order = full
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Joint transmission, full coordination: 2x2, ISD 500m

CDF

CDF

2x2, ISD = 500m, 5 tiers, SU-MIMO, 1 UE/cell, MPE TX order = full
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Practical considerations (1/2)

O UE can measure /report channels from a limited number of cells

O limited measurement set: maintain limited DL reference signal overhead

®m  limit based on “un-coordinated” long-term C/| of the cells

O limited radio reporting set: maintain limited UL feedback overhead

B |imit based on the maximum number of cells fed back by UE

O Any given packet transmitted by a limited number of cells
and any given cell can multiplex a limited number of packets

O overall backhaul loading, total backhaul payload and number
of control packets associated w/ a transmitted data packet

O physical proximity of boxes sharing the data

O complexity considerations

O Distributed coordination architecture
O minimize the amount of information entities exchanged across eNodeBs

O minimize the number of (new) functional units needed to support CoMP
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Practical considerations (2/2)

O

O

O

O

Backhaul latency

O

minimize the number of exchanges need prior to a scheduling decision

Total per-cell power constraint

O

need to be met regardless of the number of packets being transmitted

Distributed MPE scheduler design

O
O

how to make the right “un-coordinated” scheduling decision(s)

sensitivity of scheduling decision(s) to the decisions of neighbor cells

Impact of propagation delays on MPE performance

O

inter-symbol and inter-carrier interference and cyclic prefix length

Spatial channel state information

O
O
O

channel estimation / truncation rules, CSI-RS overheads
time-frequency feedback compression and encoding

MPE performance versus UE feedback overhead: tradeoff
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MPE operation outline

O Scheduling step: each cell selects UE to be served on a given
resource (time /frequency), independently from other cells

O inter-cell interference removal is accounted for in channel quality
O scheduling decisions exchanged between cells
O MPE computation step: serving cell computes multi-cell beam to
transmit packet of the scheduled UE

O beam computation assumes knowledge of all scheduled UEs and
their CSI to all relevant cells

B multi-cell beam chosen according to SLR criterion

O beam weights and UE data are sent to all cells that have non-zero
beam weight (“transmission set of that packet UE”)

O Transmission step: cells transmit the sum of all beams received
from all cells

O per-cell power capping applied as needed
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MPE: sets and parameters

UE, transmission set (TS): !J N
includes Cell, 53,7 . UE;
\ \\\
\
UE, radio reporting set (RRS) Cell,
limited by UL reporting
overhead: includes Cell, , -
Cell,
Cell; packet multiplexing order
Cell, (PMO) = 2: includes UE, ;
! UE,
Cell, //vv
—> serving pilot . .
______ > measured pilots /Quan’rlfy performance impact )
—> UE, data transmission O CSI measurement accuracy
------ > UE, data interference O (max) radio reporting set size (RRSS)
——5 UE data transmission
2342 O (max) transmission set size (TSS)
UE, measurement set determined by C/I threshold
O ket der (PMO
subject to CSI-RS overhead: includes Cell, , \ (max) packet mux order | ) /
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Multi-point transmission illustration

Focus on the packet of Cell, to UE, ,

BRS of Cell,
serving association (= control attachment point) E
"""""""""""""" . UE; ,
~~~~~~~ ) step #1: UEs are scheduled
——— step #2: CSl of scheduled UEs: Cell
5

15t inter-eNodeB exchange

step #3: Cell, defined TS for the
scheduled packet(s) and computes H :
MPE coefficients \

in this example TS={Cell, , 5 , 4/}
—> step #4: MPE coefficients and

UE data packet(s) sent to TS

2" inter-eNodeB exchange

-
7=,

\}
i W step #5: UE data transmitted
AR/

=27 by TS according to MPE
coefficients computed by Cell,

UE,

*  This timeline applies to each cell in the system: each cell transmits packets of multiple UEs
QLIALCOMW
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dba Average normalized
- ‘ 0 RX x TX feedback rate [bps/Hz/UE]
w/o MPE w/ MPE w/o MPE w/ MPE
10% 1.05 1.64 (56%) 2x2 0.008 0.026
2x2 50% 2.34 3.03 (30%) 2x4 0.013 0.028
5 mean L 3.28 (19%) * Results w/o MPE use dynamic SU-MIMO
10% 1.43 2.89 (102%) / MU-MIMO switching while MPE uses
MU-MIMO only to reduce overhead
2x4 50% 3.09 4.33 (40%)
367 4.62 (26%) * Feedback overhead w/o MPE can be
mean . :
° halved w/o much throughput loss
10% 1.22 1.70 (39%)
2x2 50% 2.67 3.53 (32%)
mean 3.22 3.87 (20%)
S
10% 1.65 3.24 (96%)
2x4 50% 3.58 4.96 (39%)
mean 4.10 5.19 (26%)
Numbers in the table represent rounded spectral efficiencies [bps/Hz]
(percentage gain over “w/o MPE” baseline)




Highlights

O Joint transmission CoMP can offer moderate throughput gains
O average throughput gain ®20% w/ 2TX and ®25% w/ 4TX

O comparable gains in hexagonal and practical layouts

O Maijor limiting factors for MPE gain

O practical ability to detect multiple neighbors claims over 50%
of theoretical MPE throughput thereby limiting gain to ®100%

O limited CSI accuracy claims over 30% of the gain achievable
w/ perfect CSl: fundamental accuracy < overhead tradeoff

O finite subband granularity and quantization payload account
for additional *8% loss: controllable via UE feedback overhead

O excess delay spread w/ normal cyclic prefix (LTE) accounts for
additional ®5-8% based on practical deployments

Page 12 QLIALICOM




CDF

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ey T

Radio reporting set and membership

3GPP-D1, MST = -20dB

Number of cells in RRS of a UE

2 3 4 5 6
Radio reporting set size

Maximum RRSS seen ~35% of time

CDF

3GPP-D1, MST =-20dB, 5 UEs/cell

1

09H

Number of UEs w/ a cell in RRS

0.8

0.7

—

0.6

_

0.5

0.4

0.3

0.2

0.1

0

—r

20

22 24 26 28 30 32 34 36 38 40
Radio reporting membership size

Radio reporting membership ~ RRSS x UEs/cell




CDF

1

2x2 & 2x4, 3GPP-D1, 5 UEs/cell

0.9 H

2x2
2x4

ey

/ A

0.8

I/

0.7

0.6

0.5

0.4

0.3

/
/]

/]

0.2

0.1

e

40

0="""'~#-

7

]

41

42 43 44
Transmit pow er per cell [dBm]

45

Maximum power of 46dBm per cell
never reached with 3dB backoff

46

CDF

2x2 & 2x4, 3GPP-D1, 5 UEs/cell

0.9 H

2x2 / /

2x4 /

0.8

0.7

0.6

0.5

0.4

0.3

/ /

/ /

0.2

0.1

/ /.

/, ____../

50

100 150 200
Backhaul in-flow per eNodeB [bps/Hz]

Per eNodeB backhaul in-flow on the order
of 1.5 - 2.0 Gbps in a 10MHz system

* ~40% less once account for overheads / losses

250




Feedback optimizations and gains

O Main steps towards feedback reduction undertaken in this study

O exploit time-domain CSI correlation to reduce feedback
® MPE is efficient at pedestrian mobility only: use channel coherence
m first order differential encoding based on assumed UE mobility
B around 35% feedback rate reduction
O scalable feedback to address different accuracy requirements
®m weaker cells within RRS of the UE require lower feedback accuracy
® joint optimization FSB granularity and feedback payload across RRS

m up to 25% feedback rate reduction

O graceful scaling w/ the number of UEs per cell by rank restriction




Spatial feedback design

O Suggested solution is hierarchical eigen-feedback

A. UE decides on RX beam for every MIMO stream
B example: receive eigen-modes matched to the serving cell

B result: equivalent MISO channel between network & UE/stream pair

B additional relative gains across eigen-modes =2 interference alignment

B. resulting channel from multiple cells/antennas to RX broken
down into per-cell and inter-cell components

B per-cell and eventually inter-cell feedback reported upon request

Cell,to UE, Cell,to UE, RX eigen-beam of the serving cell
!_L_\ !_L\
Hy=[H,1 Hyp,... . Hugrss| 32 Hy1=UAVH
Inter-cell feedback:
vector of size RRSS _ . H
b = [hu,l,la hoyios---, hu,l,RRSS} =U; " Hy
Long-term channel | , Mo e rom RRS cell m to the RX output /

/ matched to the I-th MIMO stream of UE u
Eu,l = arg mgx K [zl 1,201 'Eu,l,la ..., ZRRSS CRrRsS (Eu,l,RRSS} 3h’u,£> <Z Uu,f.,m = arg mgx K'U; h'u,,l,m>|
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Methodology of feedback optimization

O Quantify contribution of various error sources to the increase
of residual interference level

[ CSI estimation error ] [ Frequency response error] [Differentiql encoding error]

depends on C/I of a cell depends on FSB size depends on payload

O express C/I loss as function of the above error sources

O exponential approximation of frequency & encoding error
m frequency response error as function of the number of FSBs

m differential encoding error as function of payload/sub-band

B applies to per-cell channel component of every spatial stream
O analytic first order approximation of long-term SINR
O Formulate optimization problem as minimizing the total payload
of per-cell codebook feedback subject to maximum SINR loss (Y)
O bi-convex function of (number of FSBs, payload per sub-band)

O optimized via alternating minimization
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Maximum codebook size & C/l loss (2x4)

2x4, 3GPP-D1, 2 UEs/cell

2x4, 3GPP-D1, 2 UEs/cell

ey T

MPE gain in cell spectral efficiency [%]

O

Recommended feedback encoding parameters
O maximum intra-cell codebook /stream size: 12 bits
O inter-cell codebook/stream size: 2 bits/cell

O allowed C/I degradation: y = 1.0dB

*  This analysis is based on 3-tier system simulations
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MPE gain in 10% tail spectral efficiency [%]
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Maximum codebook size & C/l loss (2%x2)
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O Recommended feedback encoding parameters
O maximum intra-cell codebook /stream size: 7 bits
O inter-cell codebook/stream size: 2 bits/cell

O allowed C/I degradation: y = 1.0dB

*  This analysis is based on 3-tier system simulations
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Scheduling for MPE

O Heuristics for channel energy prediction

O MPE maximizes signal energy under multiple transmit nulling constraints

B close to projecting the channel vector across all RRS antennas onto
orthogonal complement of subspace spanned by many victim channels

B can be factored as quasi-deterministic loss w.r.t. MRC transmission?

O eNodeB maintains MPE loss: filtered ratio of the actual post-MPE
energy to the energy assuming MRC transmission across RRS

O MPE loss applied to the actual channel to predict post-MPE energy

O UE measures residual post-MPE interference based on demodulation
reference signals (UE-RS) as part of demodulation process
O filtered post-MPE interference used to obtain post-MPE CQI at eNodeB

O (minor) refinement on long-term residual interference from outside RRS

m other interference sources kept possibly small compared to residual
interference

B accurate estimate of post-MPE interference due to substantial averaging
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Evaluation methodology and parameter settings

* Throughout the document Ny X N;, is used for a MIMO channel

System evaluation parameter 3GPP-D1, 4 tiers CoMP evaluation parameter Value
eNodeB antenna gain 14dB MST [dB] -20
UE antenna gain 0dB Maximum TSS [cells] 20
TX power per cell 46dBm Maximum PMO/cell [MIMO streams] 48
Bandwidth (w/ 90% occupancy) 5MHz Maximum RRSS [cell] 8
UE noise figure 9dB Maximum BRSS [cells] 57
Inter-site distance 500m UE speed [km/h] 1
Min drop distance 35m Assumed speed @ eNodeB [km/h] 0
Log normal standard deviation 8dB CSl reporting interval [ms] 20
Log normal correlation (inter-site) 0.5 Cyclic prefix [us] 4.69
e Total power per stream [d8ml | 400" oS AT
Horizontal pattern IMT CoMP evaluation parameter w/o MPE w/ MPE
eNodeB antenna height 32m CSI-RS overhead [%] 2 5
UE antenna height 15m Feedback subband size [kHz] 90 & 900 (0.5 & 5 PRB)| 90 (0.5 PRB)
Path loss exponent 3.76 Scheduling subband size [kHz] 180 & 900 (1 & 5 PRB) 180 (1 PRB)
Path loss constant 15.3 CoMP evaluation parameter 2x2 2x4
Penetration loss 20dB MaXif:Ulf;ai(;\t[;;/e;![::ad;?oo'( 7 12
Fading model ped-B, i.i.d. spatial Max?m\l/Jm ter-coll codebook
Number of UEs/cell 2,5 payload [bits/stream/cell] 2 2

Spectral efficiencies computed based on 64QAM information rate w/ 3dB gap
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